

MONITORING YEAR 5 ANNUAL REPORT

Final

LITTLE PINE III STREAM AND WETLAND RESTORATION PROJECT

Alleghany County, NC DEQ Contract 6844 DMS Project Number 94903 DWR # 14-0041 USACE Action ID 2012-01299

Data Collection Period: March - December 2020 Draft Submission Date: January 22, 2021 Final Submission Date: February 11, 2021

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652 PREPARED BY:

Wildlands Engineering, Inc.

1430 South Mint Street, Suite 104 Charlotte, NC 28203 Phone: 704.332.7754 Fax: 704.332.3306

February 11, 2021

Mr. Harry Tsomides NC Department of Environmental Quality Division of Mitigation Services 5 Ravenscroft Dr., Suite 102 Asheville, NC 28801

RE: Monitoring Year 5 (MY5) Report – Draft Submittal Little Pine III Stream and Wetland Restoration Project DMS Project Number 94903 Contract Number 6844 New River Basin - CU# 05050001 - Alleghany County, North Carolina

Dear Mr. Tsomides:

Wildlands Engineering, Inc. (Wildlands) has reviewed the Division of Mitigation Services (DMS) comments from the Draft Monitoring Year 5 report for the Little Pine III Stream and Wetland Restoration Project. DMS' comments are noted below in **bold**. Wildlands' responses to those comments are noted in *italics*.

DMS comment: Please include the attached IRT memo summarizing the 2019 and 2020 repair events. Please remove the draft 2019 plan sheets from the MY5 report appendix.

Wildlands response: The IRT memo summarizing the 2019 and 2020 repair events have been added to the MY5 report appendix. The draft 2019 plan sheets have been omitted from the report.

DMS comment: Please check with me regarding digital support files prior to finalizing the submittal. I am awaiting comments on those and will email separately if there are any.

Wildlands response: See responses below.

Digital Support Files:

DMS comment: Please double check to make sure that the submitted Stream_Areas_of_Concern_MY5 and Vegetation_Areas_of_Concern_MY5 features support the segments and lengths or polygons and areas reported in Tables 6 and 7. For example, there are 4 bare area polygons, but 6 are reported in Table 7.

Wildlands response: Table 7 has been updated to reflect the correct number of polygons (4) reported for bare areas. The remaining lengths and acreages reported in Tables 6 and 7 were found to be accurate.

DMS comment: Note that the Table 7 export from the CVS minidatabase does not support Table 10a in the report. Please ensure that the data in the CVS minidatabase support the table in the report, and resubmit.

Wildlands response: The "Table 7" report from the CVS entry tool seems to exclude new monitored stems (from supplemental plantings) that were added in years after MYO to the "Planted woody stem entry" tab in the database. However, using the "Simple reports" spreadsheet generated directly from the CVS entry tool matches Tables 10a-b included in the monitoring report and the field data sheets included in the digital support files.

DMS comment: Please be sure that BHR calculations are excluding all points beneath the low top of bank. For example, XS 11 appears to include the point at 15.40, 2566.45 while the low bank height is 2566.4. When using the bankfull elevation that achieves the MYO cross sectional area, the BHR should be closer to 0.5.

Wildlands response: All cross-sectional dimensions have been checked to ensure accurate BHR calculations are reported. Wildlands did not find a need to adjust the points included in the cross-sectional dimension calculations. When calculating the elevation to achieve MYO cross-sectional area, keeping the "omit bkf" boxes checked above low top of bank creates limits along the stationing and truncates the cross-section. Thus, resulting in a raised elevation to achieve MYO cross-sectional area and creating inaccurate channel dimensions and a smaller BHR. Please let us know if you would like to discuss further.

Enclosed please find two (2) hard copies (one spiral bound, one binder clipped) and one (1) electronic copy on CD of the Final Monitoring Report and all digital support files. Please contact me at 704-941-9093 if you have any questions.

Sincerely,

Kirsten y. Sembert

Kirsten Y. Gimbert Project Manager kgimbert@wildlandseng.com

EXECUTIVE SUMMARY

Wildlands Engineering, Inc. (Wildlands) completed design and construction management for the North Carolina Division of Mitigation Services (DMS) as part of a design-bid-build contract at the Little Pine III Stream and Wetland Restoration Project (Site). The Site is in Alleghany County approximately eight miles east of the Town of Sparta, NC and approximately four miles south of the Virginia border. The Site lies within the New River Basin; eight-digit Cataloging Unit (CU) 05050001 and the 14-digit Hydrologic Unit Code (HUC) 05050001030030 (Figure 1). Site streams consist of Little Pine Creek, a third order stream, as well as an unnamed second order tributary to Little Pine Creek (UT2), an unnamed first order tributary to Little Pine Creek (UT2a), four unnamed zero order tributaries to Little Pine Creek (UT1, UT2b, UT3, and UT4), and 2.9 acres of wetlands (Figure 2). The project design and construction restored, enhanced, and preserved a total of 13,112 linear feet (LF) of perennial and intermittent stream, and enhanced and preserved 2.9 acres of wetlands. The Site is expected to generate 6,973.4 stream mitigation units (SMUs), and 1.393 wetland mitigation units (WMUs) for the New River Basin (Table 1).

The Site is within a Targeted Local Watershed (TLW) identified in the New River Basin Restoration Priority (RBRP) plan (NCDENR, 2009). The Site is also located within the Little River & Brush Creek Local Watershed Plan (LWP). The project goals from the mitigation plan (Wildlands, 2014) were established with careful consideration of RBRP goals and objectives to address stressors identified in the LWP. The established project goals include:

- Restore unforested buffers;
- Remove livestock from buffers;
- Remove livestock from streams;
- Repair heavily eroded stream banks and improve stream bank stability;
- Reforest steep landscape around streams; and
- Enhance wetland vegetation.

Site construction and as-built survey were completed in 2016 with planting and baseline monitoring activities occurring between December 2015 and May 2016. The monitoring year (MY) 5 activities occurred in March through December 2020.

Overall, the Site is meeting MY5 monitoring success criteria for vegetation, geomorphology, and hydrology performance standards. The MY5 vegetation survey resulted in an average of 409 planted stems per acre, which is meeting the final MY5 monitoring requirement of 260 stems per acre with 19 of the 21 plots (90%) individually meeting this requirement. Previously observed areas of invasive plant populations have significantly been reduced by supplemental treatments. Morphological surveys and visual assessment indicate that the channel dimensions are stable and functioning as designed, with the exception of minor areas of scour and sediment deposition. DMS has implemented two phases of stream repairs in 2019 and 2020. The repairs completed in the fall 2019 along UT2a and UT2 appear stable. The repairs recently completed in 2020 to address formation of headcuts and excessive streambank erosion on UT1 and Little Pine Creek were surveyed in MY5 and will be evaluated during MY6. At least one bankfull event occurred during MY5 data collection which was recorded by crest gages and by visual indicators. The performance standard of two recorded bankfull events in separate monitoring years has been met for Little Pine Creek, UT2, and UT2b. No target performance standard was established for wetland hydrology success; however, the groundwater gage in Wetland FF recorded 169 consecutive days of the groundwater levels at or within 12 inches of the ground surface, consisting of 100% of the growing season.

LITTLE PINE III STREAM AND WETLAND RESTORATION PROJECT

Monitoring Year 5 Report

TABLE OF CONTENTS

Section 1:	PROJECT OVERVIEW	1-1
1.1	Project Goals and Objectives	1-1
1.2	Monitoring Year 5 Data Assessment	1-2
1.2.1	Vegetation Assessment	1-2
1.2.2	Vegetation Areas of Concern and Management Activity	1-3
1.2.3	Stream Assessment	1-3
1.2.4	Stream Areas of Concern and Management Activity	1-4
1.2.5	Hydrology Assessment	1-4
1.2.6	Wetland Assessment	1-5
1.3	Monitoring Year 5 Summary	1-5
Section 2	METHODOLOGY	2-1
Section 3	REFERENCES	3-1

APPENDICES

Appendix 1	General Tables and Figures
Figure 1	Project Vicinity Map
Figure 2	Project Component/Asset Map
Table 1	Project Components and Mitigation Credits
Table 2	Project Activity and Reporting History
Table 3	Project Contact Table
Table 4	Project Information and Attributes
Table 5	Monitoring Component Summary
Appendix 2	Visual Assessment Data
Figure 3.0 – 3.2	Current Condition Plan View Maps
Table 6a – g	Visual Stream Morphology Stability Assessment Table
Table 7	Vegetation Condition Assessment Table
	Stream Photographs
	Vegetation Photographs
Appendix 3	Vegetation Plot Data
Table 8	Vegetation Plot Criteria Attainment
Table 9	CVS Vegetation Plot Metadata
Table 10a-b	Planted and Total Stem Counts (Species by Plot with Annual Means)
Appendix 4	Morphological Summary Data and Plots
Table 11a-b	Baseline Stream Data Summary
Table 12a-b	Morphology and Hydraulic Summary (Dimensional Parameters – Cross-Section)
Table 13a-f	Monitoring Data – Stream Reach Data Summary
	Longitudinal Profile Plots
	Cross-Section Plots
	Reachwide and Cross-Section Pebble Count Plots
Appendix 5	Hydrology Summary Data and Plots
Table 14	Verification of Bankfull Events
Table 15	Wetland Gage Attainment Summary
	Groundwater & Stream Gage Plots
	Monthly Rainfall Data

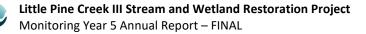
Appendix 6 Repair Plans IRT Repair Memo – December 17, 2020

Section 1: PROJECT OVERVIEW

The Site is a DMS design-bid-build project in Alleghany County, NC, located in the New River Basin; eight-digit CU 05050001 and the 14-digit HUC 05050001030030 (Figure 1). Located in the Blue Ridge belt of the Blue Ridge province (USGS, 1998), the project watershed includes primarily managed herbaceous, mixed upland hardwoods, and other forested land. The drainage area for the Site is 2,784 acres. Little Pine Creek flows into Brush Creek several hundred feet downstream of the Site boundary. The land adjacent to the streams and wetlands is primarily maintained cattle pasture and forest.

The project streams consist of Little Pine Creek, a third order stream, as well as an unnamed second order tributary to Little Pine Creek (UT2), an unnamed first order tributary to Little Pine Creek (UT2a) and four unnamed zero order tributaries to Little Pine Creek (UT1, UT2b, UT3, and UT4) (Figure 2). Mitigation work within the Site included restoring and enhancing 9,888 linear feet (LF) and preserving 3,224 LF of perennial stream, enhancing 2.71 acres of wetlands and preserving a 0.19 acres existing wetland. The Site is expected to provide 6,973.4 SMUs, and 1.393 WMUs.

A conservation easement protecting 57.3 acres in perpetuity was purchased by the State of North Carolina and recorded with Alleghany County Register of Deeds in 2012. The final mitigation plan was submitted and accepted by DMS in March 2014. Construction activities were completed in September 2015 by North State Environmental, Inc. Planting was completed in December 2015 by Bruton Environmental, Inc. Kee Surveying, Inc. completed the as-built survey in April 2016. Wildlands completed the baseline monitoring activities in May 2016 and subsequent monitoring has been conducted annually with closeout expected in 2021. Repairs were completed in March and December 2016. Appendix 1 includes detailed project activity, history, contact information, and background information. Directions and a map of the Site are provided in Figure 1. Site components are discussed in Table 1 and illustrated in Figure 2.


1.1 Project Goals and Objectives

Prior to construction activities, livestock had full access to most of the Site streams and used them as a water source. The riparian buffers in areas proposed for restoration were primarily herbaceous with a few sparse trees. Deposition of fine sediment, severe bank erosion, and trampling of banks impacted the in-stream habitat. Channel widening and incision indicated instability. Table 4 in Appendix 1 and Table 11 in Appendix 4 provide pre-restoration condition details.

The Site is intended to provide numerous ecological benefits within the New River Basin. While many of these benefits are limited to the Site area, others, such as pollutant removal, reduced sediment loading, and improved aquatic and terrestrial habitat, have farther-reaching effects. Expected improvements to water quality and ecological processes are outlined below as secondary goals and objectives. These project goals were established with careful consideration of goals and objectives that were described in the RBRP and to address stressors identified in the LWP.

The project specific goals of the Site address stressors identified in the Mitigation Plan (Wildlands, 2014) include the following:

- Restore unforested buffers;
- Remove livestock from buffers;
- Remove livestock from streams;
- Repair heavily eroded stream banks and improve stream bank stability;
- Reforest steep landscape around streams; and
- Enhance wetland vegetation.

Secondary goals include the following:

- Remove harmful nutrients from creek flow;
- Reduce pollution of creek by excess sediment;
- Improve in-stream habitat; and
- Improve aesthetics.

The project objectives have been defined as follows:

- Restore 27.8 acres of forested riparian buffer;
- Fence off livestock from 57.3 acres of buffer and 14,736 LF of existing streams;
- Stream bank erosion which contributes sediment load to the creek will be greatly reduced, if not eliminated, in the project area. Eroding stream banks will be stabilized by increased woody root mass in banks, reducing channel incision, and by using natural channel design techniques, grading, and planting to reduce bank angles and bank height;
- Steep, unforested landscape within the conservation easement will be reforested;
- Eight of the nine onsite wetlands will be enhanced with supplemental plantings;
- Flood flows will be filtered through restored floodplain areas, where flood flow will spread through native vegetation. Vegetation takes up excess nutrients;
- Storm flow containing grit and fine sediment will be filtered through restored floodplain areas, where flow will spread through native vegetation. The spreading of flood flows will reduce velocity allowing sediment to settle out;
- In-stream structures will promote aeration of water;
- In-stream structures will be constructed to improve habitat diversity and trap detritus. Wood structures will be incorporated into the stream as part of the restoration design. Such structures may include log drops and rock structures that incorporate woody debris; and
- Site aesthetics will be enhanced by planting native plant species, treating invasive species, and stabilizing eroding and unstable areas throughout the project.

1.2 Monitoring Year 5 Data Assessment

Annual monitoring was conducted during MY5 (March to December 2020) to assess the condition of the project. The stream restoration success criteria for the Site follows the approved performance standards presented in the Little Pine III Stream & Wetland Restoration Project Final Mitigation Plan (Wildlands, 2014).

1.2.1 Vegetation Assessment

A total of 21 vegetation monitoring plots (VP) were established during baseline monitoring within the project easement areas using a standard 10 by 10 meter plot. Please refer to Figures 3.0-3.2 in Appendix 2 for the vegetation monitoring locations. The final vegetation success criterion is the survival of 260 planted stems per acre in the riparian corridor along restored and enhanced reaches at the end of year five of the monitoring period.

The MY5 vegetation survey was completed in August 2020, resulting in an average planted stem density of 409 stems per acre. The Site has met the final MY5 requirement of 260 planted stems per acre, with 19 of the 21 plots (90%) individually meeting this requirement. The planted stem mortality was approximately 9% of the MY4 stem count (447 stems per acre). In addition, there is an average of 10 planted stems per plot.

Located in Wetland FF, VP13 continues to not meet the stem density requirement because the planted species are not suited for areas with saturated soils. There has also been a high planted stem mortality in VP11 due to competition with tall herbaceous vegetation. Approximately 4% of the remaining planted

stems scored a vigor of 1, indicating that they are unlikely to survive. In addition, approximately 29% of the remaining planted stems scored a vigor of 2, indicating more than minor damage to leaf material and/or bark tissue exists. This is most likely due to stress on planted stems included storm damage, animal herbivory, insects, and too wet or dry conditions. Please refer to Appendix 2 for vegetation plot photographs and Appendix 3 for vegetation data tables.

1.2.2 Vegetation Areas of Concern and Management Activity

Some invasive plant populations were identified and treated within the Site boundary in MY5 with predominant species including Japanese barberry (*Berberis thunvergii*), multiflora rose (*Rosa multiflora*), tree of heaven (*Ailanthus altissima*), and oriental bittersweet (*Celastrus orbiculatus*). The invasive species treatments throughout the monitoring period have kept the total acreages very low, which is currently less than 0.1% of the easement acreage.

The floodplain vegetation along Little Pine Creek Reach 1 is naturally recovering where out of bank storm events had previously deposited sandy sediment, burying planted stems and herbaceous cover. In addition, some evidence of beaver herbivory is evident along Little Pine Creek, but no dams have been observed on the Site. Beaver activity is not having a significant impact of woody stem densities as many woody stems pruned by beavers were observed to be resprouting and therefore, management of the beaver activity is not needed at this time. These vegetation areas of concern will continue to be monitored and addressed by DMS as necessary. Please refer to the current condition plan view (CCPV) Figures 3.0-3.2 in Appendix 2 for vegetation areas of concern.

1.2.3 Stream Assessment

Morphological surveys for MY5 were conducted in December 2020 in order to capture the stream repair work that was completed in the fall 2020. Overall, results indicate that channel dimensions are stable and functioning as designed, with the exception of the remaining stream areas of concern identified in section 1.2.4.

The surveyed longitudinal profile data for the project streams illustrates that bedform features have maintained lateral and vertical stability between MY4 and MY5. The longitudinal profile parameters on Little Pine Creek, UT2, and UT2b showed little change from baseline in slope (riffle, water surface, bankfull) with minor differences in pool-to-pool spacing and pool length. Max pool depths increased in most reaches due to scour from log structures, which enhances aquatic habitat. Some localized instances of structure piping and aggradation were noted during the MY5 survey and are discussed in section 1.2.4.

In general, the cross-sections on Little Pine Creek, UT2, and UT2b show little to moderate change in the bankfull dimensions compared to the baseline survey. Along Little Pine Creek Reach 1, floodplain sediment deposition is evident along both banks, thus increasing bankfull depths and decreasing width-to-depth ratios slightly but is not indicating reachwide instability. Riffle cross-sections 4, 8, and 9 along Little Pine Creek Reaches 2a and 2b have higher bank height ratios due to increased bankfull cross-sectional area and depths compared to baseline from minor bed and bank scour. Cross-section 5 is located where recent bank repair work was completed and although the cross-sectional area is larger than at baseline, the stream conditions appear stable. Along UT2, a scour pool is starting to form within riffle cross-section 14 due to a log grade control structure located upstream. In addition, cross-sections 17 and 18 are representative of some sediment deposition downstream of the culvert crossing on UT2 as the valley flattens before the confluence with Little Pine Creek. However, as demonstrated in cross-section 17 and 18, alluvial deposits have caused the bed and bank elevations to rise but similar width-to-depth ratios and bankfull depths are being maintained compared to baseline. Along UT2b, riffle cross-section 11 plot shows some narrowing of the channel due to alluvial deposition and vegetation

established along both banks. Stream areas of concern causing changes in cross-section dimensions are discussed further in section 1.2.4.

In general, pebble counts within the restoration reaches indicate maintenance of coarser materials in the riffles and finer particles in the pools. The particle size distributions along most restoration reaches for MY5 are similar to the as-built data in coarseness and distribution. Refer to Appendix 2 for the visual stability assessment table, CCPV maps, and reference photographs. Refer to Appendix 4 for the morphological summary data and plots.

1.2.4 Stream Areas of Concern and Management Activity

Two phases of stream repairs that were completed in the fall 2019 and fall 2020 have significantly reduced major areas of concern and improved the overall stability of project streams. Outside of the repaired areas, there remain a few isolated instances of structure piping, bank scour, sediment deposition, and clogged culverts at internal easement crossings on the Site.

Along Little Pine Creek, DMS completed a repair plan in fall 2020 for Reach 1 (STA 100+43 to 101+75) and Reach 2a (STA 121+25 to 122+50) to address areas of stream instability. Repair activities included installing constructed riffles, geolifts, and repairing rock vane structures. The remaining areas of bank scour along the restored reaches of Little Pine Creek (STA 108+00, 118+00, 123+00, 124+75, and 128+00) appear isolated and minor in severity.

The 2020 repair plan also addressed the formation of headcuts and bank erosion along UT1 (STA 10+00 to 12+28) by regrading banks and installing structures to improve grade control in the stream. In MY2, sediment aggradation was observed on approximately 192 linear feet of UT1 downstream of the culvert crossing (STA 200+36) and beyond the two installed boulder sills (STA 202+28). Currently, a defined baseflow channel is still present downstream of the two installed boulder sills and woody vegetation established along the banks is helping shade out the herbaceous cover, thus transporting more accumulated fine sediment in the reach.

Some structure piping that was previously noted along UT2 Reach 1 Upper persists into MY5 with an additional area of stream downcutting near STA 310+50. Furthermore, sediment deposition persists into MY5 above both culvert crossings on UT2 Reach 1 (Upper and Lower). In the fall 2019, DMS completed a plan to complete repairs along UT2 Reach 2 (STA 332+25 to 339+15) and UT2a (STA 427+00 to 432+00) which included spot bank grading, geolift, grade control installation, and structure repairs. Overall, the repair areas appear to be performing well. A few areas of bank scour and sediment deposition persist along UT2 but seem minor in severity. Please refer to Appendix 2 for stream stability tables and CCPV Figures 3.0-3.2.

1.2.5 Hydrology Assessment

At least one bankfull event occurred on Little Pine Creek, UT2, and UT2b reaches during the MY5 data collection, which was recorded using crest gages and visual indicators. Two bankfull flow events occurring in separate years must be documented on the restoration reaches within the five year monitoring period. The performance standard was met in MY3 for Little Pine, UT2, and UT2b.

At the end of MY3, a stream gage using a pressure transducer was installed to monitor flow on UT1, approximately 50 LF downstream of the two installed boulder sills. A total of 345 consecutive days of flow were documented in MY5 with multiple bankfull events correlating with peaks in rainfall. At the time of each gage download, flow was also visually observed along this section of UT1 validating the gage data that a baseflow channel is still present downstream of the two installed boulder sills. Please refer to Appendix 5 for hydrologic data and graphs.

1.2.6 Wetland Assessment

One groundwater monitoring gage (GWG 1) was established during the baseline monitoring within the Wetland FF area using logging hydrology pressure transducers. The gage was installed at an appropriate location so that the data collected will provide an indication of groundwater levels throughout the wetland enhancement area. No target performance standard for wetland hydrology success was established within the mitigation plan (Wildlands, 2014). Wetland hydrology attainment typically consists of recorded groundwater levels within 12 inches of the ground surface for a consecutive period consisting of a pre-defined percentage of the growing season. Under typical precipitation conditions, Alleghany County's growing season extends 169 days from April 26th to October 11th. No onsite rainfall data is available; however, daily precipitation data for MY5 was collected from closest NC CRONOS Station, Sparta 3.5 SSW. GWG 1 recorded 169 consecutive days of the groundwater levels at or within 12 inches of the ground surface, consisting of 100% of the growing season. Monthly rainfall data in 2020 indicated higher than normal rainfall amounts occurred during the months of January, February, April, May, August, October, and November, and lower than normal rainfall amounts occurred during March 2020. Please refer to Appendix 2 for the groundwater gage location and Appendix 5 for groundwater hydrology data and plots.

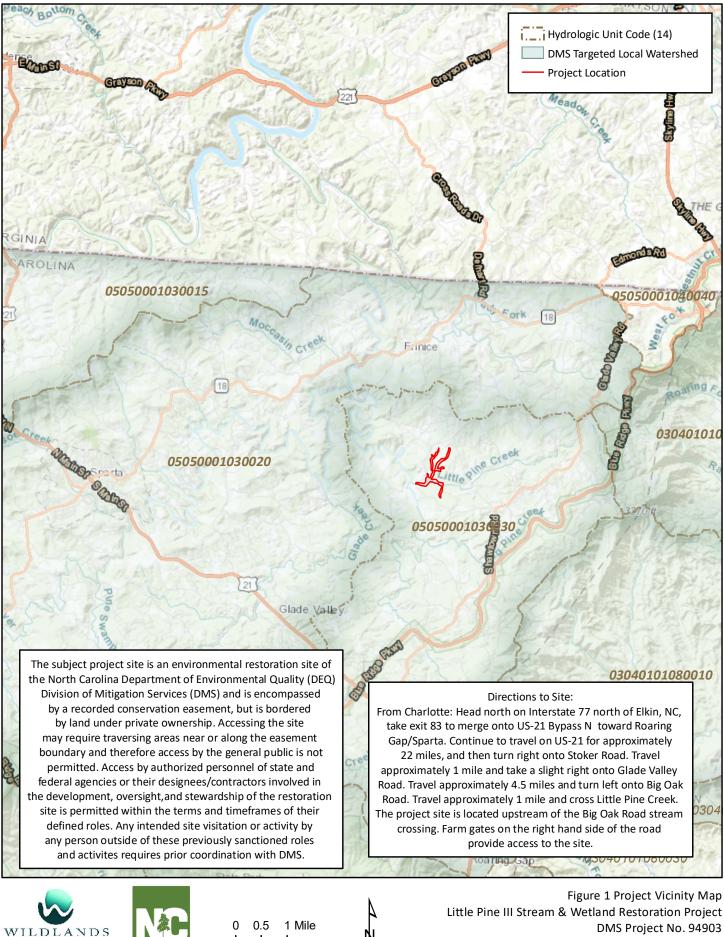
1.3 Monitoring Year 5 Summary

Overall, the Site is meeting MY5 monitoring success criteria for vegetation, geomorphology, and hydrology performance standards. The MY5 vegetation survey resulted in an average of 409 planted stems per acre, which is meeting the final MY5 monitoring requirement of 260 stems per acre with 19 of the 21 plots (90%) individually meeting this requirement. Previously observed areas of invasive plant populations have significantly been reduced by supplemental treatments. Morphological surveys and visual assessment indicate that the channel dimensions are stable and functioning as designed, with the exception of minor areas of scour and sediment deposition. DMS has implemented two phases of stream repairs in 2019 and 2020. The repairs completed in the fall 2019 along UT2a and UT2 appear stable. The repairs recently completed in 2020 to address formation of headcuts and excessive streambank erosion on UT1 and Little Pine Creek were surveyed in MY5 and will be evaluated during MY6. At least one bankfull event occurred during MY5 data collection which was recorded by crest gages and by visual indicators. The performance standard of two recorded bankfull events in separate monitoring years has been met for Little Pine Creek, UT2, and UT2b. No target performance standard was established for wetland hydrology success; however, the groundwater gage in Wetland FF recorded 169 consecutive days of the groundwater levels at or within 12 inches of the ground surface, consisting of 100% of the growing season.

Summary information and data related to the performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these annual monitoring reports can be found in the mitigation plan documents available on DMS's website. All raw data supporting the tables and figures in the Appendices are available from DMS upon request.

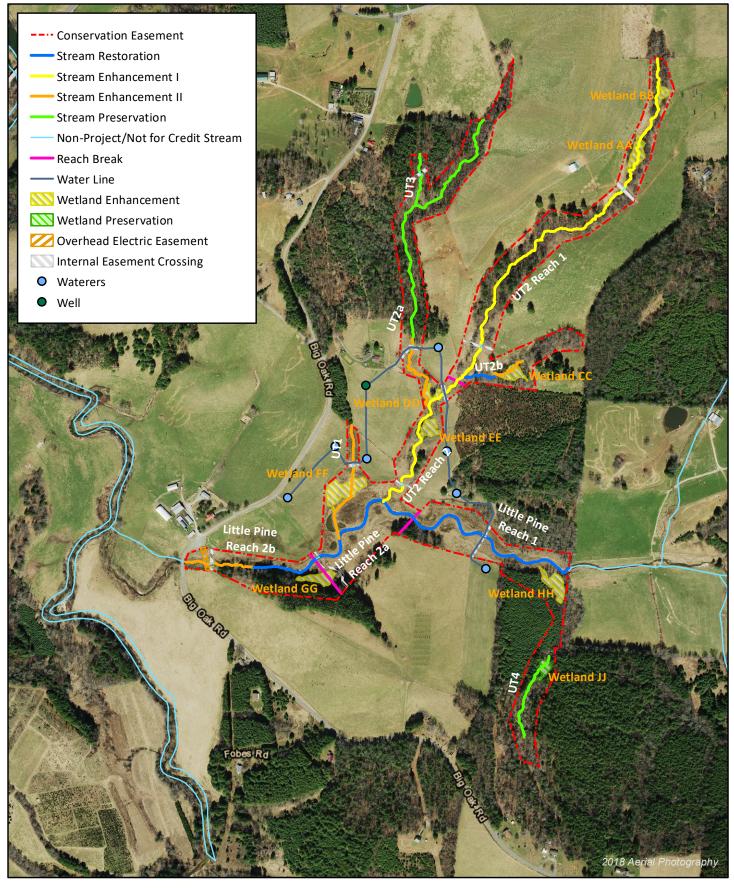
Section 2: METHODOLOGY

Geomorphic data was collected following the standards outlined in The Stream Channel Reference Site: An Illustrated Guide to Field Techniques (Harrelson et al., 1994) and in the Stream Restoration: A Natural Channel Design Handbook (Doll et al., 2003). Longitudinal and cross-sectional data were collected using a total station and were georeferenced. All Current Condition Plan View mapping was recorded using a Trimble handheld GPS with sub-meter accuracy and processed using was Pathfinder and ArcView. Crest gages were installed in surveyed riffle cross-sections and monitored annually. Hydrology attainment installation and monitoring methods are in accordance with the standards published in the United States Army Corps of Engineers Stream Mitigation Guidelines (2003). Vegetation monitoring protocols followed the Carolina Vegetation Survey-NCEEP Level 2 Protocol (Lee et al., 2008).



Section 3: REFERENCES

- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration A Natural Channel Design Handbook.
- Harrelson, Cheryl C; Rawlins, C.L.; Potyondy, John P. 1994. *Stream Channel Reference Sites: An Illustrated Guide to Field Technique.* Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, Michael T., Peet, Robert K., Steven D., Wentworth, Thomas R. 2008. CVS-EEP Protocol for Recording Vegetation Version 4.2. Retrieved from: http://cvs.bio.unc.edu/protocol/cvs-eep-protocol-v4.2-lev1-2.pdf
- North Carolina Climate Retrieval and Observations Network of the Southeast Database (NCCRONOS). 2020. State Climate Office of North Carolina. Version 2.7.2. Station ID Sparta 3.5 SSW. Accessed December 2020.
- North Carolina Division of Mitigation Services and Interagency Review Team Technical Workgroup. 2018. Standard Measurement of the BHR Monitoring Parameter. Raleigh, NC.
- North Carolina Division of Water Resources (NCDWR). 2016. Surface Water Classifications. Retrieved from http://deq.nc.gov/about/divisions/water-resources/planning/classification-standards/classifications
- NCDENR. 2009. New River Basin Restoration Priorities. Retrieved from http://deq.nc.gov/about/divisions/mitigation-services/dms-planning/watershed-planningdocuments/new-river-basin
- NCDENR. 2007. Little River & Brush Creek Local Watershed Plan (LWP) Project Atlas. Retrieved from http://deq.nc.gov/about/divisions/mitigation-services/dms-planning/watershed-planningdocuments/new-river-basin
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- United States Army Corps of Engineers (USACE), 2003. Stream Mitigation Guidelines. USACE, NCDENR-DWQ, USEPA, NCWRC.
- United States Geological Survey (USGS), 1998. North Carolina Geology. https://deq.nc.gov/about/divisions/energy-mineral-land-resources/north-carolina-geologicalsurvey/
- Wildlands Engineering, Inc. 2014. Little Pine III Stream & Wetland Restoration Project Final Mitigation Plan. NCEEP, Raleigh, NC.
- Wildlands Engineering, Inc. 2016. Little Pine III Stream & Wetland Restoration Project As-Built Baseline Monitoring Report. NCDEQ-DMS, Raleigh, NC.


APPENDIX 1. General Tables and Figures

1 1

DMS Project No. 94903 Monitoring Year 5 - 2020

Alleghany County, NC

WILDLANDS

0

700 Feet

Ń

Figure 2 Project Component/Asset Map Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Alleghany County, NC

Table 1. Project Components and Mitigation Credits Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

					Mitigation C	redits								
	Stre	-	· ·	arian Wetland	Non-Riparian V		Buffer	Nitrogen I	Nutrient Offset	Phosphorous Nutrient Offset				
Туре	R	RE	R	RE	R	RE								
Totals	6,328.6	644.8	N/A	1.393	N/A	N/A	N/A		N/A	N/A				
			1			Proj	ect Components		I	1	1			
Re	each ID	Existing Footage/ Acreage		Approach	Restoration (R) or Equivalent		As-Built Stationing/ Location	As-Built Restoration Footage/ Footage/ Acreage Acreage ¹		Mitigation Ratio ²	Credits ¹ (SMU/WMU)	Notes ¹		
							STREAMS							
Little P	ine Reach 1			P1/P2	Restoration	(R)	100+00 to 114+44	1,444	1,444 1,417		1,417.0	Excludes one 27 foot wide ford crossing.		
Little Pi	ine Reach 2a			P1	Restoration (R) Restoration (R)		114+44 to 125+27	1,083	1,058	1:1	1,058.0	Excludes one 25 foot wide ford crossing.		
		4,016		P1/P2	Restoration (R)		125+27 to 130+20	493	493	1:1	493.0			
Little Pi	ne Reach 2b						130+20 to 135+60	540	509	2.5:1	197.0	Excludes one 31 foot wide ford crossing, Includes 50% reduction for 33 ft overhead electric easement crossing.		
	UT1	540	Plai	nting, fencing	Enhancement II (R)		Enhancement II (R)		197+26 to 202+24	498	463	2.5:1	185.2	Excludes one 35 foot wide culvert crossing.
			Planting, fen	icing, channel creation	Enhancement	: II (R)	202+24 to 206+26	402	402	2.5:1	160.8			
-	Reach 1 Reach 2	5,270	P1/P2/	P4, preservation	Enhancement I (R)		297+18-343+18	4,600 4,474		2:1	2,237.0	Excludes four constructed culvert crossings; 32, 24, 32, and 38 feet		
012	. neuen z		Plai	nting, fencing	Enhancement	: II (R) ³	401+78 to 403+34 & 403+75 to 404+34	215 ³	215 ³	n/a	n/a	wide respectively. Easement Break 403+34 - 403+75		
	UT2a	2,921	Р	reservation	Preservation	1 (RE)	405+15 to 426+58	2,143	2,143	5:1	428.6			
			Plai	nting, fencing	Enhancement	: II (R)	426+58 to 432+09	551	519	2.5:1	207.6	Excludes one 32 foot wide constructed culvert crossing.		
	UT2b	553	Plai	nting, fencing	Enhancement	: II (R)	500+00 to 503+00	300	300	2.5:1	120.0			
	0120	555		P2	Restoration	(R)	503+00 to 505+53	253	253	1:1	253.0			
	UT3	400	P	reservation	Preservation	1 (RE)	602+44 to 606+44	400	384	5:1	76.8	Excludes one 16 foot wide constructed ford crossing.		
	UT4	1,036	Ρ	reservation	Preservatior	1 (RE)	701+26 to 708+23	697	697	5:1	139.4			
							WETLANDS			-				
	tland AA	0.38		nting, fencing	Enhancemen		UT2 floodplain		0.38	2:1	0.190			
	tland BB	0.16		nting, fencing	Enhancemen	. ,	UT2 floodplain		0.16	2:1	0.080			
	tland CC	0.26		rol, planting, fencing	Enhancemen		UT2b headwaters		0.26	2:1	0.130			
	tland DD	0.12		nting, fencing	Enhancemen		North of UT2/UT2a		0.12	2:1	0.060			
	tland EE tland FF	0.28		nting fencing zation, planting, fencing	Enhancemen Enhancemen		UT2 floodplain North of UT1/Little		0.28	2:1	0.140			
W/o	tland GG	0.33	Pla	nting, fencing	Enhancemen	t (RF)	Pine Little Pine		0.33	2:1	0.165			
	tland HH	0.33		ng, grade control	Enhancemen		South of UT4/ Little Pine		0.42	2:1	0.210			
We	etland JJ	0.19	Р	reservation	Preservation	1 (RE)	UT4 floodplain		0.19	5:1	0.038			

	Component Summation											
Restoration Level	Stream (LF)	Riparian Wetland (acres)	Non-Riparian Wetland (acres)	Buffer (square feet)	Upland (acres)							
Restoration	3221											
Enhancement I	4474											
Enhancement II	2193											
Enhancement		2.71										
Preservation	3224	0.19										

¹Restoration footage based off of the surveyed as-built thalweg alignment is greater than design centerline alignment, resulting in credited length greater than that reported in the Mitigation Plan. ²Unique ratio for UT2 was discussed in field with IRT members and recorded 8/15/2012 in meeting notes.

³Length not included in component summation since no credit is sought

Table 2. Project Activity and Reporting History

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903

Monitoring Year 5 - 2020

Activity or Report		Data Collection Complete	Completion or Scheduled Delivery
Mitigation Plan		March 2013	March 2014
Final Design - Construction Plans		N/A	September 2014
Construction		N/A	September 2015
Temporary S&E mix applied to entire project a	rea ¹	N/A	July - September 2015
Permanent seed mix applied to reach/segment	is ¹	N/A	July - September 2015
Bare root and live stake plantings for reach/seg	gments	N/A	December 2015
Repair Work		N/A	March 2016 / December 2016
Descline Maritarian Desument (Versio)	Vegetation Survey	May 2016	Lub. 2010
Baseline Monitoring Document (Year 0)	Stream Survey	April 2016	– July 2016
Very 1 Meritarian	Vegetation Survey	October 2016	Deventes 2016
Year 1 Monitoring	Stream Survey	October 2016	December 2016
Very 2 Meritarian	Vegetation Survey	September 2017	No. 4 10 4 2017
Year 2 Monitoring	Stream Survey	May 2017	November 2017
	Invasive Treatment	N/A	July 2018
Year 3 Monitoring	Vegetation Survey	September 2018	No. 4 (hos 2010
	Stream Survey	June 2018	November 2018
	Invasive Treatment	N/A	July, Aug, Sept, & Oct 2019
	Stream Repair	N/A	September 2019
Year 4 Monitoring	Vegetation Survey	September 2019	December 2019
	Stream Survey	April, May, & December 2019	December 2019
	Stream Repair	N/A	November 2020
Year 5 Monitoring	Vegetation Survey	August 2020	January 2021
	Stream Survey	December 2020	January 2021

¹Seed and mulch was added as each section of construction was completed.

Table 3. Project Contact Table

Little Pine III Stream & Wetland Restoration Project DMS Project No.94903 Monitoring Year 5 - 2020

	Wildlands Engineering, Inc.
Designer	1430 South Mint Street, Ste 104
Aaron Early, PE, CFM	Charlotte, NC 28205
	704.332.7754
	North State Environmental, Inc.
Construction Contractor	2889 Lowery Street
	Winston-Salem, NC 27101
	Bruton Natural Systems, Inc
Planting Contractor	P.O. Box 1197
	Fremont, NC 27830
	North State Environmental, Inc.
Seeding Contractor	2889 Lowery Street
	Winston-Salem, NC 27101
Seed Mix Sources	Green Resource, LLC
Nursery Stock Suppliers	
Bare Roots	Bruton Natural Systems, Inc
Live Stakes	Foggy Mountain Nursery
Plugs	Mellow Marsh Farms
Monitoring Performers	Wildlands Engineering, Inc.
Monitoring, POC	Kirsten Gimbert
	704.941.9093

Table 4. Project Information and Attributes

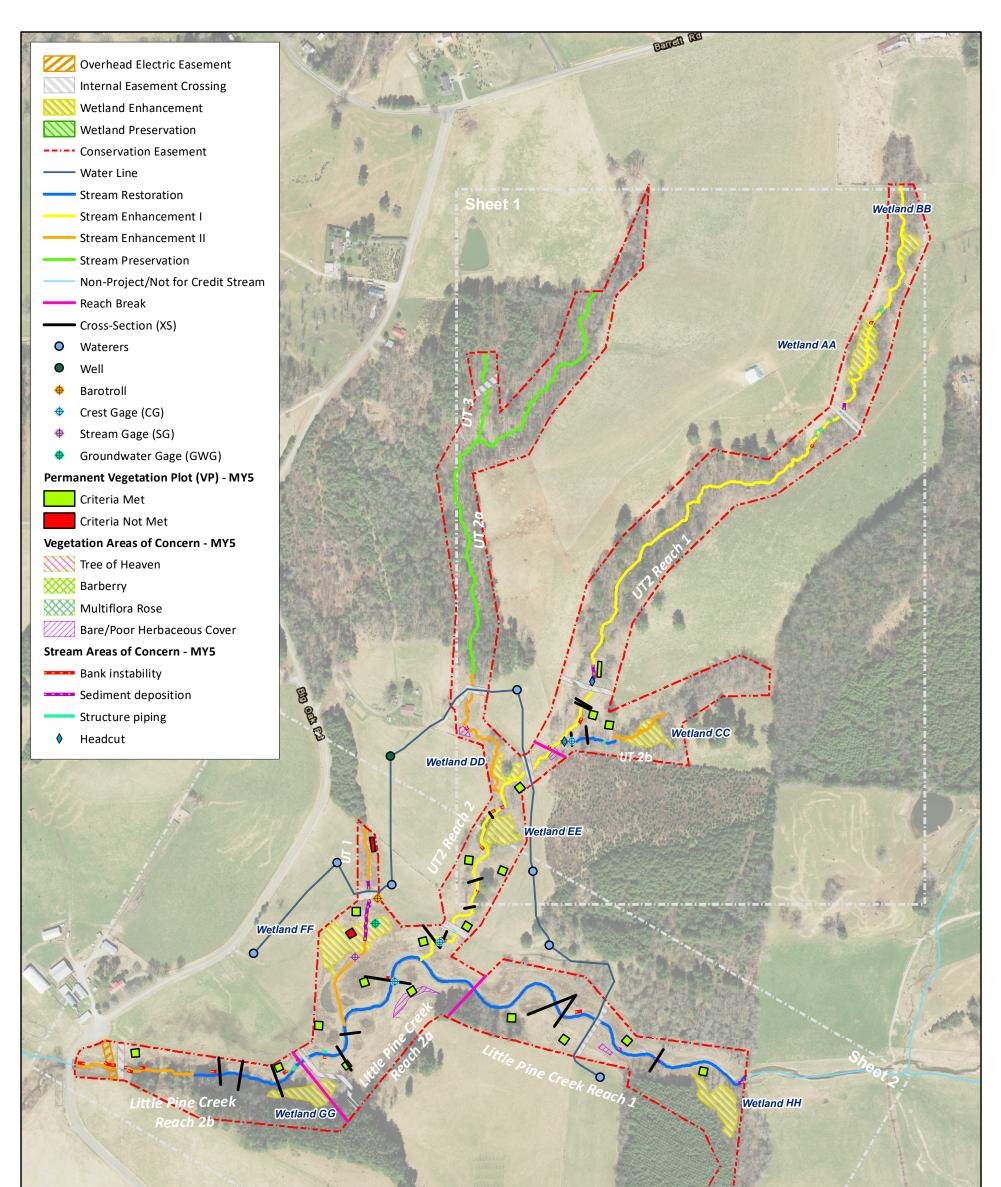
Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

ittle Ding			tion							
	Creek III 9	Stream & W		estoration						
Alleghany			cellana ne							
57.32	county									
	9.16" N. 81	° 0' 6.12''W	1							
				rmation						
	e Belt of th	ne Blue Ridg	ge Provinc	ce						
-										
	.030030									
,										
Managed	Herbaceo	us (74%), N	lixed Upla	and Hardw	voods (20%	%), Mixed				
Hardwoo	ds/Conifer	s (5%), Sout	thern Yell	ow Pine (<1%), Mou	untain Cor	nifers (<19	6)		
				,	"		,	,		
	Neach Suin	inary initio	mation	1	1		1			
LP	LP	LP	1174	UT2	UT2	UT2	1172-	LITON	1172	UT4
Reach 1	Reach 2a	Reach 2b	011	Reach 1	Reach 2	Reach 3	UIZa	0120	013	014
			900				2 909	553	400	697
				75		196				33
		,						-	-	31.5
	- Ј.Ј	-J.J	22.23	50		1.7	74	20/37.3	50.5	51.5
C/	C/E4	C4	N/A	۸ <i>۸</i>		E1	C4h	E/h	N/A	N/A
-										N/A N/A ²
,										
								•		
Chester c	lay loam (2	25-45% slop	es), erode	ed (Evard)	; Codorus	complex	(Arkaqua)	; Tate loar	n (6-10%	slopes);
Watauga	loam (6-45	5% slopes).								
				We	ell-drained	d				
A/D (N	likwasi): B	(Ashe stony	/ fine sand	dv loam. C	hester loa	am. Tate l	oam. Wat	auga loam): B/D (Co	odorus
										N/A ²
010010	0.0000	0.0007		0.017		0.020	0.011	0.001	IN/A	
		Pie	dmont/N	Aountain I		nd Forest	Rich Cove	1		
						14 1 01 050)				
	Demilates	. Consider			0,0					
	Regulator	y Consider	ations		1					
Appli	cable?	F	Resolved?	ı		Sup	porting D	ocumenta	tion	
Ŷ	es		Yes		USACE	Nationwic	le Permit	No.27 and	DWQ 40	1 Water
Ŷ	es		Yes		Quali	ty Certific	ation No.	3885. Acti	on ID# 14	-0041
N	/A		N/A				N	/A		
Y	es		Yes		LPIII C	Categorica	l Exclusior	ר (CE) App	roved 7/6	5/2012
Y	es		Yes		No histo					ed (letter
N	lo		N/A				N	/A		
Yes ³ No impact application was prepared for local review. No post-project activities LPIII Final Mitigation Plan (3/4/2014) and Approved 7/6/2012					(4) and [[
Ye	es ³	No post-	Yes No post-project activities required. Approved 7/6/20 Yes Yes LPIII Final Mitigation Plan (3/4/ Approved 7/6/20							
	ject W ilue Ridg iew 5050001 5050001 5050001 5050001 5050001 5050001 5050001 1% Anaged lardwoo LP LP 1,444 2,496 45.5 C4 I/V/V Illuvial la c4 c4 C4 I/V/V Vatauga A/D (N 0.0043 V Y Y N Y Y	ject Watershee Jue Ridge Belt of th 1990 5050001 5050001030030 507-03 ,784 176 Anaaged Herbaceo lardwoods/Conifer Reach Sum LP LP Reach Sum LP LP Reach 2a 1,444 1,083 2,496 2,752 45.5 45.5 C4 C/E4 IV/V III/IV III/V III/V III/VI III/	Ject Watershed Summa Jue Ridge Belt of the Blue Rid Jue Ridge Belt of the Blue Rid So50001 5050001030030 5-07-03 ,784 1% Ananged Herbaceous (74%), N tardwoods/Conifers (5%), Sour Reach Summary Infor LP LP LP LP Reach 2b 1,444 1,083 1,033 2,496 2,752 2,784 45.5 45.5 45.5 C4 C/E4 C4 IV/V III/IV IV/V Julvial land, wet (Nikwasi); Asi thester clay loam (25-45% slopes). A/D (Nikwasi); B (Ashe stony 0.0043 0.0059 0.0087 Pic Regulatory Consider Yes Yes Yes Yes Yes Yes	Ilue Ridge Belt of the Blue Ridge Provinciew 12001 5050001 5050001030030 5-07-03 5-07-03 ,784 1% 784 1% 1% Reach Summary Information LP UT1 Reach 24 28 Q496 2,752 2,784 28 Q4 C/E C/E Q4 C/E Q4 C/E Q4 C/E A/D (Nikwasi); B (Ashe stony fine same 0.0043 0.0059 O.0087	Ject Watershed Summary Information Jue Ridge Belt of the Blue Ridge Province Jew 5050001 5050001030030 5-07-03 ,784 1% Anaaged Herbaceous (74%), Mixed Upland Hardv tardwoods/Conifers (5%), Southern Yellow Pine (- Reach Summary Information LP LP LP LP UT WT2 Reach 1 Reach 2a Reach 2b WT1 Reach 1 1,444 1,083 1,033 900 2,496 2,752 2,784 28 75 45.5 45.5 45.5 22.25 36 C4 C/E4 C4 N/A A4 1//V III/IV IV/V N/A ² N/A ⁴ Jluvial land, wet (Nikwasi); Ashe stony fine sandy ihester clay loam (25-45% slopes). WA/D (Nikwasi); B (Ashe stony fine sandy loam, C 0.0043 0.0059 0.0087 N/A ² 0.047 Piedmont/Mountain I Regulatory Considerations Applicable? Resolved? Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Ject Watershed Summary Information Rue Ridge Province lew 5050001 505000130030 5-07-03 5-77-03 ,784 1% Anaaged Herbaceous (74%), Mixed Upland Hardwoods (20') lardwoods/Conifers (5%), Southern Yellow Pine (<1%), More	Ject Watershed Summary Information Hue Ridge Belt of the Blue Ridge Province Image: Colspan="2">Image: Colspan="2" Image: Colspan="2"	Ject Watershed Summary Information Jue Ridge Belt of the Blue Ridge Province Jue Ridge Belt of the Blue Ridge Province Ject Watershed Summary Information Southern Yellow Pine (<1%), Muxed	ject Watershed Summary Information like Ridge Province lew 5050001 5050001 5050003 5050001 5050003 303 784 1% Anaged Herbaceous (74%), Mixed Upland Hardwoods (20%), Mixed lardwoods/Conifers (5%), Southern Yellow Pine (<1%), Mountain Conifers (<1%)	Ject Watershed Summary Information Jule Ridge Province Jew 5050001 505000130030 5050001 505000130030 507-03

1: Length includes internal easment crossings. 2: UT1 is enhancement II only, and UT3 and UT4 are preservation only. Geomorphic surveys were not performed for these streams in existing conditions.

3: The downstream 400 LF of Little Pine Creek near Big Oak Road is within a FEMA Zone AE floodplain on Firm panel 4010. The Zone AE floodplain is due to the backwater of Brush Creek; Little Pine Creek is not a FEMA studied stream.

4: Streams do not fit into Simon Evolutionary Sequence.


Table 5. Monitoring Component Summary

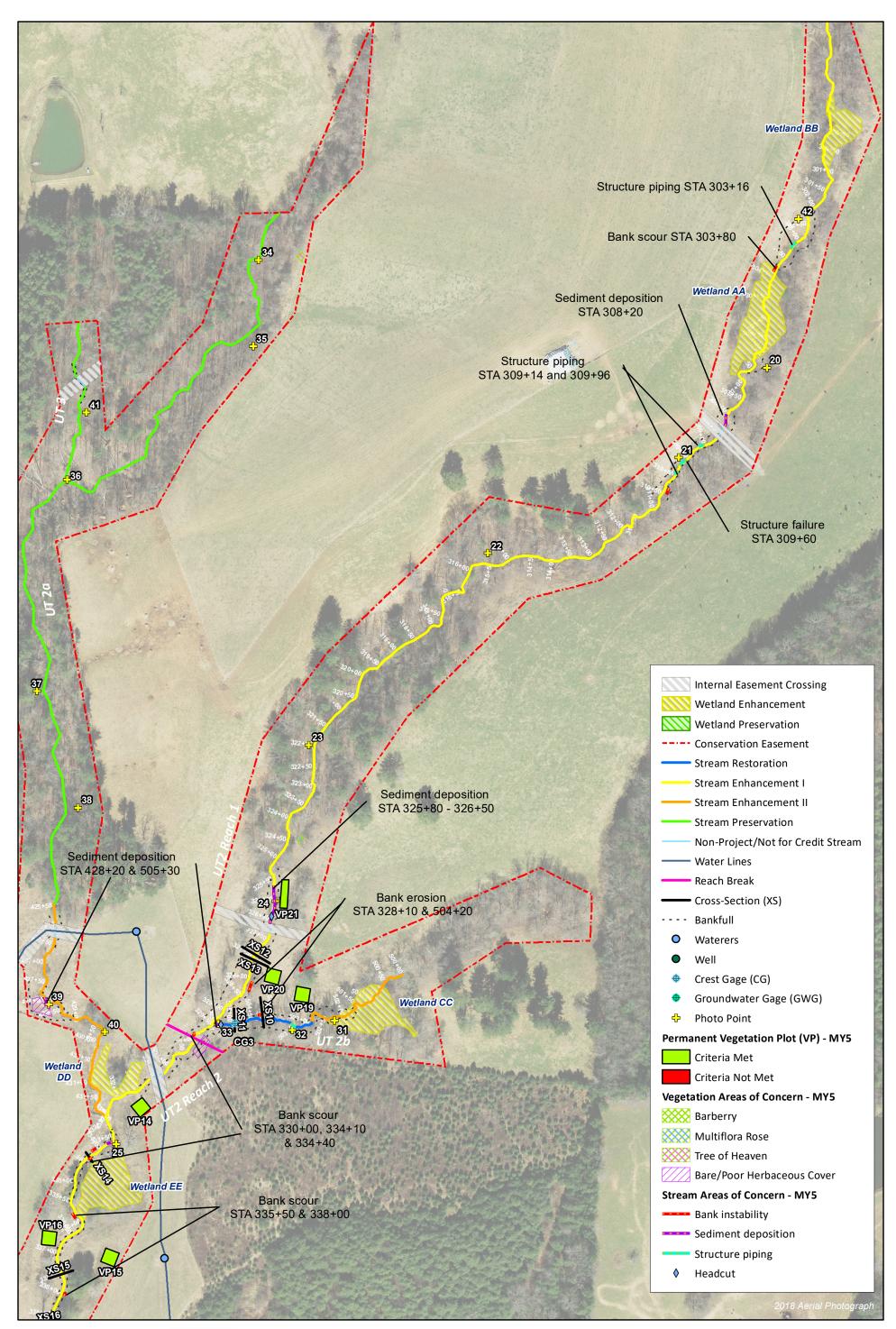
Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

						Quantity/ Ler	igth by Reac	h				
Parameter	Monitoring Feature	Little Pine Reach 1	Little Pine Reach 2a	Little Pine Reach 2b	UT1	UT2	UT2a	UT2b	UT3	UT4	Wetlands	Frequency
Dimension	Riffle Cross Section	2	2	2	N/A	4	N/A	1	N/A	N/A	N/A	Annual
Dimension	Pool Cross Section	1	1	1	N/A	3	N/A	1	N/A	N/A	N/A	Annuar
Pattern	Pattern	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Profile	Longitudinal Profile		Y		N/A	Y	N/A	Y	N/A	N/A	N/A	N/A
Substrate	Reach Wide (RW) / Riffle (RF) 100 Pebble	RW-1, RF-1	RW-1, RF-1	RW-1, RF-1	N/A	RW-1, RF-3	N/A	RW-1, RF-1	N/A	N/A	N/A	N/A
Stream Hydrology	Crest Gage		1		N/A	1	N/A	1	N/A	N/A	N/A	Annual
Wetland Hydrology	Groundwater Gages	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1	Annual
Vegetation ¹	CVS Level 2					2	1					Annual
Visual Assessment	All Streams	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Annual
Exotic and nuisance vegetation												
Project Boundary												
Reference Photos	Photographs		•			4	2	-		•	-	Annual

¹A deviation from the vegetation plot quantity indicated in the Mitigation Plan is due to a smaller than expected planted area.

APPENDIX 2. Visual Assessment Data

4


Ŵ

0	200	400 Feet	
	<u> </u>		

Figure 3.0 Current Condition Plan View Map (Key) Little Pine Creek III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Alleghany County, NC

100 200 Feet

Figure 3.1 Current Condition Plan View Map (Sheet 1) Little Pine Creek III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Alleghany County, NC

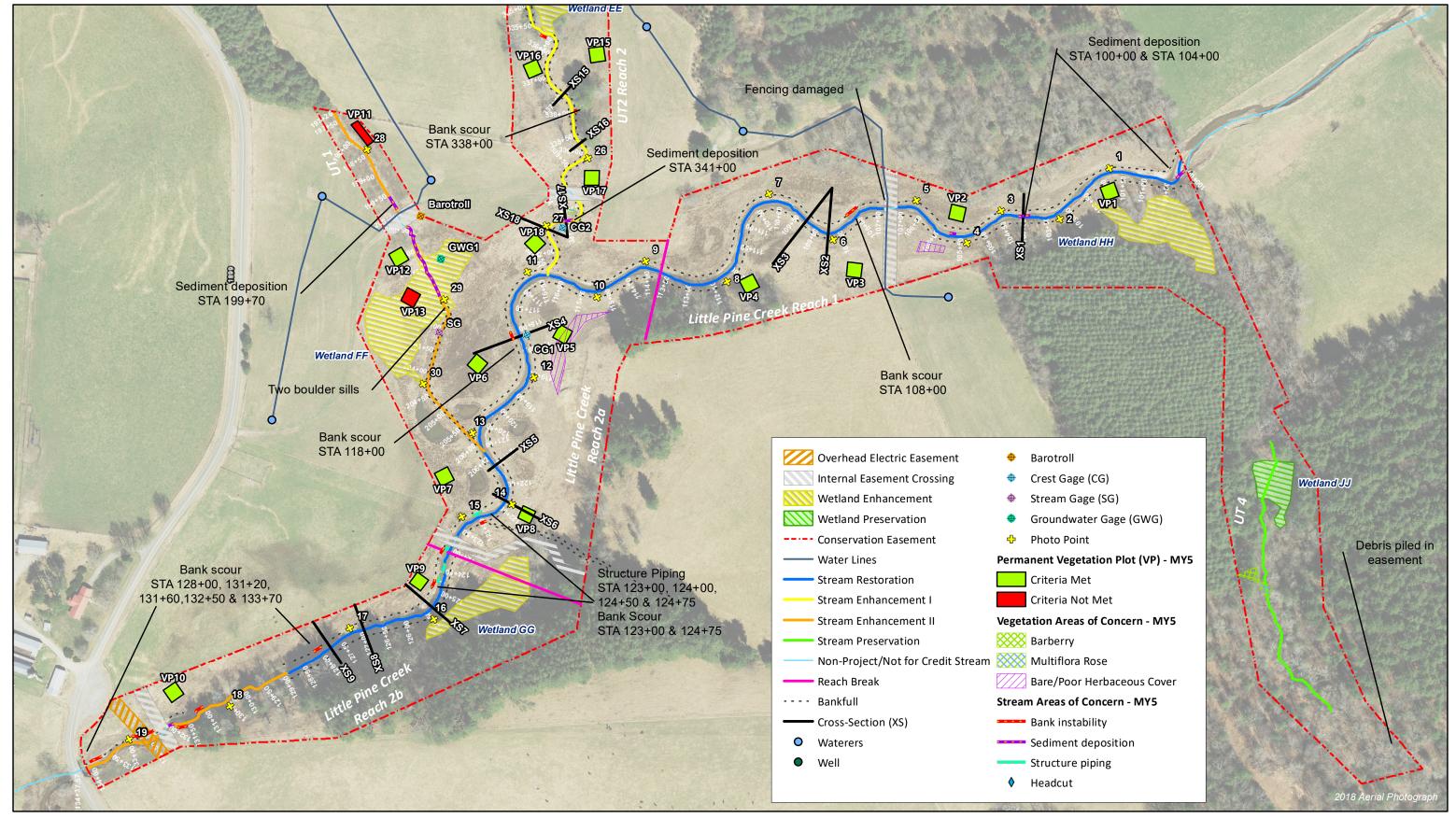


Figure 3.2 Current Condition Plan View Map (Sheet 2) Little Pine Creek III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020 Alleghany County, NC

Table 6a. Visual Stream Morphology Stability Assessment Table

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Major Channel Category	(STA 100+00 - 114+44) 1 Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			3	65	95%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	10	10			100%			
	3. Meander Pool	Depth Sufficient	7	7			100%			
1. Bed	Condition	Length Appropriate	7	7			100%			
		Thalweg centering at upstream of meander bend (Run)	9	9			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	9	9			100%			
							•			
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			1	30	99%	n/a	n/a	n/a
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
	•	•		Totals	1	30	99%	n/a	n/a	n/a
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	3	3		•	100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	3	3			100%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	3	3			100%			
Structures ¹	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	3	3			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	3	3			100%			

Little Pine Reach 1 (STA 100+00 - 114+44) 1,444 LF assessed

Table 6b. Visual Stream Morphology Stability Assessment Table

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Major Channel Category	a (114+44-125+27) 1,083 Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	7	7			100%			
	3. Meander Pool	Depth Sufficient	6	6			100%			
1. Bed	Condition	Length Appropriate	6	6			100%			
	4 Thebune Desition	Thalweg centering at upstream of meander bend (Run)	7	7			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	7	7			100%			
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			2	35	98%	n/a	n/a	n/a
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	2	35	98%	n/a	n/a	n/a
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	5	5			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	4	5			80%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	4	5			80%			
Structures ¹	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	5	5			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	5	5			100%			

Little Pine Reach 2a (114+44-125+27) 1,083 LF assessed

Table 6c. Visual Stream Morphology Stability Assessment Table

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Major Channel Category	2b (125+27-130+20) 493 L Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	4	4			100%			
	3. Meander Pool	Depth Sufficient	4	4			100%			
1. Bed	Condition	Length Appropriate	4	4			100%			
		Thalweg centering at upstream of meander bend (Run)	4	4			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	4	4			100%			
							•			
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			2	35	96%	n/a	n/a	n/a
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
	-			Totals	2	35	96%	n/a	n/a	n/a
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	3	5			60%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	3	5			60%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	3	5			60%			
Structures ¹	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	5	5			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	5	5			100%			

Little Pine Reach 2b (125+27-130+20) 493 LF assessed

Table 6d. Visual Stream Morphology Stability Assessment Table

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Major Channel Category	channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			1	30	98%			
1. Bed	(Riffle and Run units)	Degradation		-	0	0	100%			
	2. Riffle Condition	Texture/Substrate	9	10			90%			
	3. Meander Pool	Depth Sufficient	n/a	n/a			n/a			
	Condition	Length Appropriate	n/a	n/a			n/a			
		Thalweg centering at upstream of meander bend (Run)	n/a	n/a			n/a			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	n/a	n/a			n/a			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			2	30	99%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	2	30	99%	n/a	n/a	n/a
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	16	21			76%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	16	21			76%			
3. Engineered Structures ¹	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	16	21			76%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	21	21			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	21	21			100%			

UT2 Reach 1 Upper (STA 297+18 - 310+50) 1,332 LF assessed

Table 6e. Visual Stream Morphology Stability Assessment Table

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			1	90	79%			
1. Bed	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	9	12			75%			
	3. Meander Pool	Depth Sufficient	n/a	n/a			n/a			
	Condition	Length Appropriate	n/a	n/a			n/a			
		Thalweg centering at upstream of meander bend (Run)	n/a	n/a			n/a			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	n/a	n/a			n/a			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			2	35	96%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	2	35	96%	n/a	n/a	n/a
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	20	20			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	20	20			100%			
3. Engineered Structures ¹	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	20	20			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	20	20			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	16	20			80%			

UT2 Reach 1 Lower (STA 325+67 - 330+00) 433 LF assessed

Table 6f. Visual Stream Morphology Stability Assessment Table

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Major Channel Category	330+00 - 343+18) 1,318 L Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			2	45	97%			
1. Bed	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	13	15			87%			
	3. Meander Pool	Depth Sufficient	4	5			80%			
	Condition	Length Appropriate	4	5			80%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	4	5			80%			
	4. maiweg Position	Thalweg centering at downstream of meander bend (Glide)	4	5			80%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			4	50	98%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
	-	·		Totals	4	50	98%	n/a	n/a	n/a
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	19	19			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	19	19			100%			
3. Engineered Structures ¹	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	19	19			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	19	19			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	17	19			89%			

UT2 Reach 2 (STA 330+00 - 343+18) 1,318 LF assessed

Table 6g. Visual Stream Morphology Stability Assessment Table

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

UT2b (STA 503+00 - 505+53) 253 LF assessed

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			1	20	92%			
1. Bed	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	7	9			78%			
	3. Meander Pool	Depth Sufficient	n/a	n/a			n/a			
	Condition	Length Appropriate	n/a	n/a			n/a			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	n/a	n/a			n/a			
	4. maiweg Position	Thalweg centering at downstream of meander bend (Glide)	n/a	n/a			n/a			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			1	10	98%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
		•		Totals	1	10	98%	n/a	n/a	n/a
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	22	23			96%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	22	23			96%			
3. Engineered Structures ¹	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	22	23			96%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	23	23			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	23	23			100%			

Table 7. Vegetation Condition Assessment Table

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Planted Acreage	27.8				
Vegetation Category	Definitions	Mapping Threshold (acres)	Number of Polygons	Combined Acreage	% of Planted Acreage
Bare Areas	Very limited cover of both woody and herbaceous material	0.1	4	0.19	0.67%
Low Stem Density Areas ¹	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1	2	0.05	0.18%
		Total	6	0.24	0.85%
Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0	0	0.0	0.0%
		Cumulative Total	6	0.24	0.85%

Easement Acreage	57.3				
Vegetation Category	Definitions	Mapping Threshold (SF)	Number of Polygons	Combined Acreage	% of Acreage
Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	1000	5	0.05	0.09%
Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale).	none	0	0	0.0%

¹Acreage calculated from permanent vegetation monitoring plots.

Stream Photographs

Photo Point 1 – Little Pine Reach 1, looking upstream (12/08/2020)

Photo Point 1 – Little Pine Reach 1, looking downstream (12/08/2020)

Photo Point 2 – Little Pine Reach 1, looking upstream (12/08/2020)

Photo Point 2 – Little Pine Reach 1, looking downstream (12/08/2020)

Photo Point 3 – Little Pine Reach 1, looking upstream (12/08/2020)

Photo Point 3 – Little Pine Reach 1, looking downstream (12/08/2020)

Photo Point 9 – Little Pine Reach 2a, looking upstream (12/08/2020)

Photo Point 9 – Little Pine Reach 2a, looking downstream (12/08/2020)

Photo Point 12 – Little Pine Reach 2a, looking upstream (12/08/2020)

Photo Point 12 – Little Pine Reach 2a, looking downstream (12/08/2020)

Photo Point 14 – Little Pine Reach 2a, looking upstream (12/08/2020)

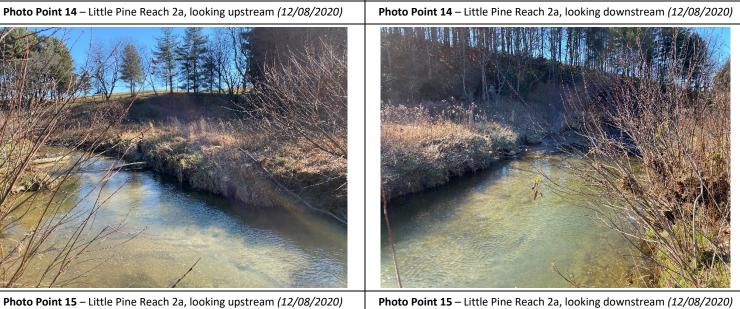


Photo Point 15 – Little Pine Reach 2a, looking downstream (12/08/2020)

Photo Point 24 – UT2 Reach 1, looking downstream (12/08/2020)

Photo Point 24 – UT2 Reach 1, looking upstream (12/08/2020)

Photo Point 36 – UT2a, looking upstream (12/08/2020)

Photo Point 36 – looking upstream UT3 (12/08/2020)

Photo Point 36 – UT2a, looking downstream (12/08/2020)

Photo Point 38 - UT2a, looking upstream (12/08/2020)

Photo Point 38 – UT2a, looking downstream (12/08/2020)

Photo Point 39 – UT2a, looking upstream (12/08/2020)

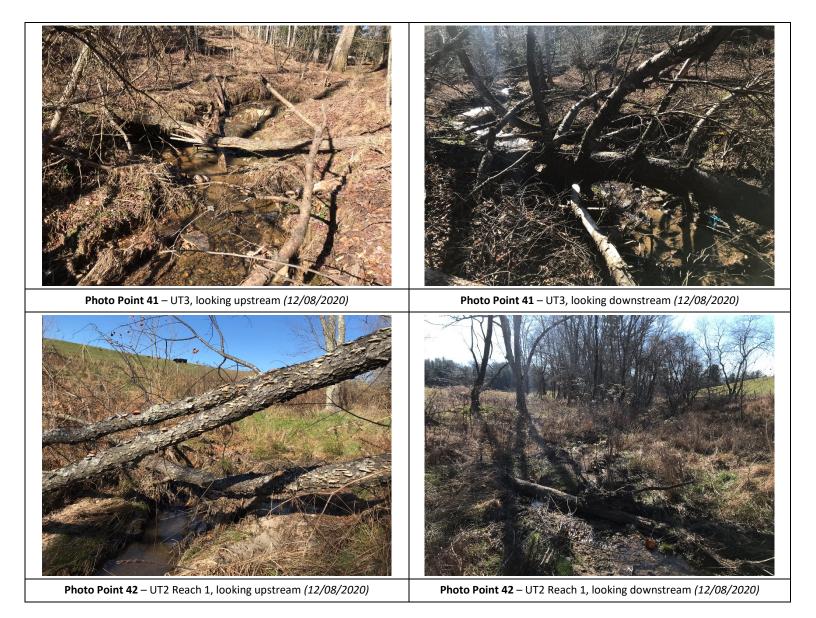
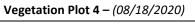

Photo Point 39 – UT2a, looking downstream (12/08/2020)

Photo Point 40 – UT2a, looking upstream (12/08/2020)

Photo Point 40 – UT2a, looking downstream (12/08/2020)

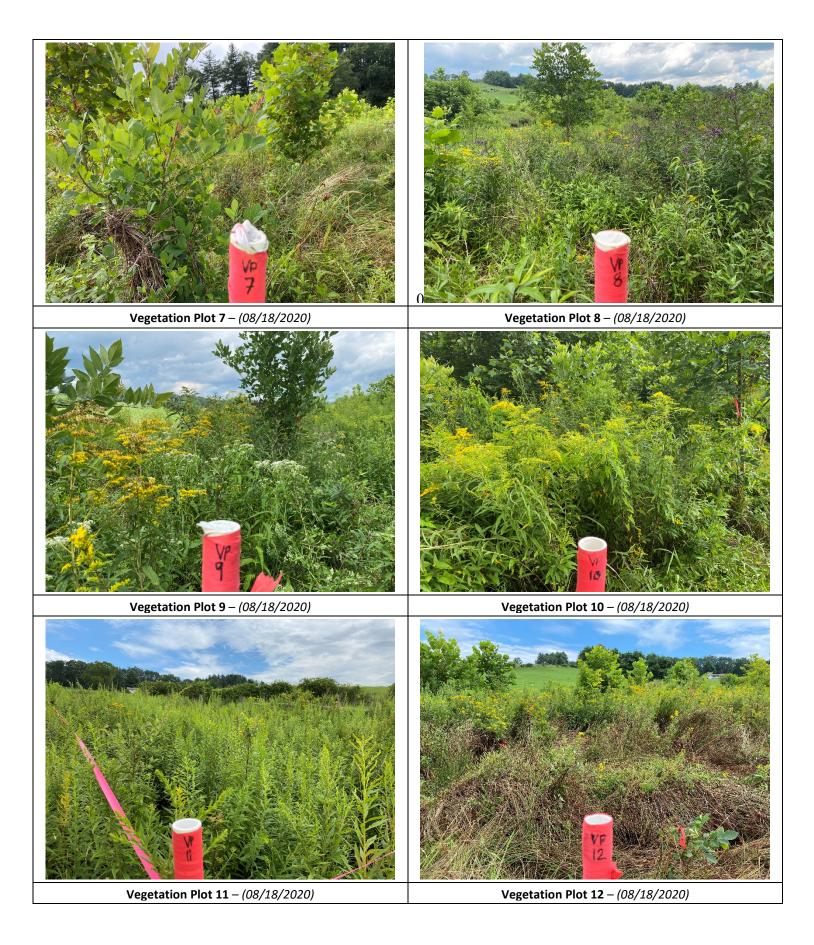
Vegetation Photographs

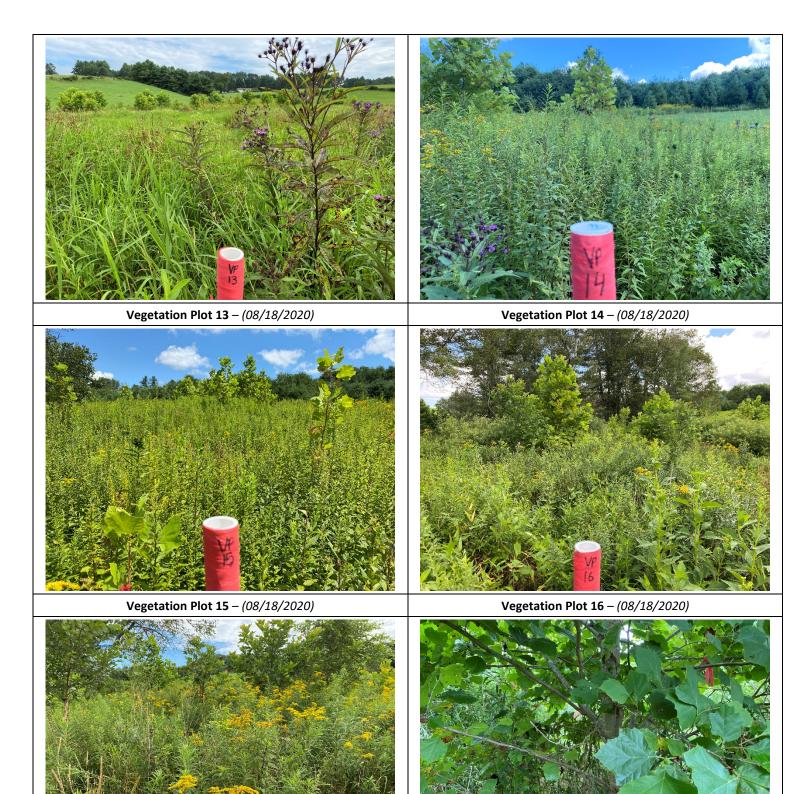


Vegetation Plot 1 – (08/18/2020)

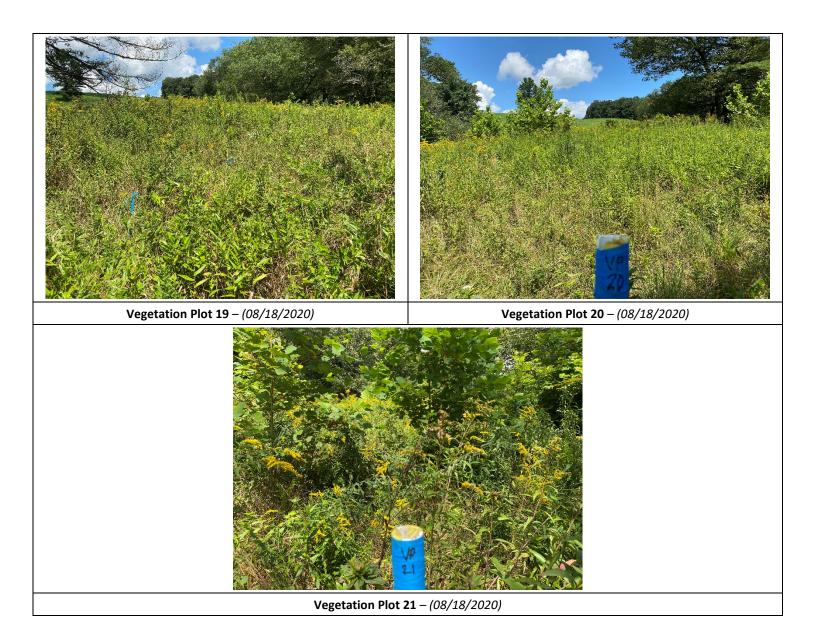
Vegetation Plot 2 – (08/18/2020)

Vegetation Plot 3 – (08/18/2020)





Vegetation Plot 5 – (08/18/2020)


Vegetation Plot 6 – (08/18/2020)

Vegetation Plot 17 – (08/18/2020)

Vegetation Plot 18 – (08/18/2020)

APPENDIX 3. Vegetation Plot Data

Table 8. Vegetation Plot Criteria Attainment

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Plot	MY5 Success Criteria Met (Y/N)	Tract Mean
1	Y	
2	Y	
3	Y	
4	Y	
5	Y	
6	Y	
7	Y	
8	Y	
9	Y	
10	Y	
11	N	90%
12	Y	
13	N	
14	Y	
15	Y	
16	Y	
17	Y	
18	Y	
19	Y]
20	Y	
21	Y	

Table 9. CVS Vegetation Plot Metadata

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Database Name	cvs-eep-entrytool-v2.5.0 LP III MY5.mdb
Database Location	L:\ActiveProjects\005-02160 Little Pine III Monitoring\Monitoring\Monitoring Year 5\Vegetation Assessment
Computer Name	MIMI-PC
•	
File Size	53932032
DESCRIPTION OF WORKSHEETS IN THIS D	
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	94903
Project Name	Little Pine Creek III Stream & Wetland Restoration Project
Description	Little Pine Creek III Stream & Wetland Restoration Project
Sampled Plots	21
Required Plots (calculated)	21
Sampled Plots	21

Table 10a. Planted and Total Stem Counts

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

						Cu	irrent P	lot Dat	a (MY5	2020)													
Scientific Name	Common Name	Species Type	9490)3-WEI-	0001	9490)3-WEI-	0002	9490	3-WEI-	0003	9490)3-WEI-(0004	9490	3-WEI-	0005	9490)3-WEI-	0006	9490	03-WEI-0	0007
			PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum	Red Maple	Tree			10	1	1	1	1	1	1	3	3	3	4	4	7				1	1	2
Alnus serrulata	Tag Alder	Shrub Tree																		2			
Betula nigra	River Birch	Tree	1	1	1	3	3	3	3	3	3	2	2	2				5	5	5	1	1	3
Cercis canadensis	Redbud	Shrub Tree	2	2	2							2	2	2	4	4	4				2	2	2
Cornus	Dogwood	Shrub Tree																					
Cornus amomum	Silky Dogwood	Shrub Tree																					
Cornus florida	Flowering Dogwood	Shrub Tree						1															
Fraxinus pennsylvanica	Green Ash	Tree	1	1	1	2	2	2	2	2	2	5	5	6	2	2	2				8	8	8
Juglans nigra	Black Walnut	Tree																					
Lindera benzoin	Northern Spicebush	Shrub Tree																					
Liriodendron tulipifera	Tulip Poplar	Tree																					
Pinus taeda	Loblolly Pine	Tree																					
Platanus occidentalis	Sycamore	Tree	1	1	1	1	1	1				1	1	1	1	1	1	2	2	2	3	3	3
Salix sericea	Silky Willow	Shrub Tree						2												3			
Sambucus canadensis	Common Elderberry	Shrub Tree																					
Ulmus americana	American Elm	Tree	2	2	2	2	2	2	8	8	8				2	2	2						
		Stem count	7	7	17	9	9	12	14	14	14	13	13	14	13	13	16	7	7	12	15	15	18
		size (ares)		1			1			1			1			1			1			1	
		size (ACRES)		0.02471			0.02471			0.02471	1		0.02471			0.02471	L		0.02471	1		0.02471	L
		Species count	5	5	6	5	5	7	4	4	4	5	5	5	5	5	5	2	2	4	5	5	5
		Stems per ACRE	283	283	688	364	364	486	567	567	567	526	526	567	526	526	647	283	283	486	607	607	728

						Cu	irrent P	lot Dat	a (MY5	2020)													
Scientific Name	Common Name	Species Type	9490	3-WEI-	0008	9490)3-WEI-	0009	9490)3-WEI-	0010	9490)3-WEI-	0011	9490)3-WEI-	0012	949	03-WEI-	0013	9490)3-WEI-	0014
			PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т
Acer rubrum	Red Maple	Tree	4	4	4	3	3	3	2	2	2				1	1	1						
Alnus serrulata	Tag Alder	Shrub Tree																					
Betula nigra	River Birch	Tree				1	1	1	1	1	1				3	3	4				1	1	1
Cercis canadensis	Redbud	Shrub Tree	2	2	2	1	1	1	1	1	1										1	1	1
Cornus	Dogwood	Shrub Tree																					
Cornus amomum	Silky Dogwood	Shrub Tree																					
Cornus florida	Flowering Dogwood	Shrub Tree																					
Fraxinus pennsylvanica	Green Ash	Tree	4	4	4	3	3	3	4	4	6	2	2	2	4	4	4				2	2	2
Juglans nigra	Black Walnut	Tree						1															1
Lindera benzoin	Northern Spicebush	Shrub Tree																					
Liriodendron tulipifera	Tulip Poplar	Tree			1																		
Pinus taeda	Loblolly Pine	Tree																					1
Platanus occidentalis	Sycamore	Tree	1	1	1				2	2	2				1	1	2	1	1	1	2	2	2
Salix sericea	Silky Willow	Shrub Tree																					
Sambucus canadensis	Common Elderberry	Shrub Tree																					
Ulmus americana	American Elm	Tree				4	4	4							2	2	4				3	3	3
		Stem count	11	11	12	12	12	13	10	10	12	2	2	2	11	11	15	1	1	1	9	9	11
		size (ares)		1			1			1			1			1			1			1	
		size (ACRES)	(0.02471	1		0.02471	_		0.02471	_		0.02471			0.02471	1		0.02471	_		0.02471	L.
		Species count	4	4	5	5	5	6	5	5	5	1	1	1	5	5	5	1	1	1	5	5	7
		Stems per ACRE	445	445	486	486	486	526	405	405	486	81	81	81	445	445	607	40	40	40	364	364	445

Color for Density

- Exceeds requirements by 10%
- Exceeds requirements, but by less than 10%
- Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of planted stems excluding live stakes P-all: Number of planted stems including live stakes

T: Total stems

Table 10b. Planted and Total Stem Counts

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

						Cur	rent Plo	ot Data	(MY5 2	020)													
Scientific Name	Common Name	Species Type	9490	03-WEI-	0015	9490)3-WEI-	0016	9490)3-WEI-	0017	9490)3-WEI-	0018	9490)3-WEI-	0019	9490)3-WEI-	0020	949	03-WEI-	0021
			PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum	Red Maple	Tree			30	3	3	6							1	1	26			50	2	2	22
Alnus serrulata	Tag Alder	Shrub Tree																					
Betula nigra	River Birch	Tree	3	3	3				3	3	3	3	3	3				1	1	1	3	3	3
Cercis canadensis	Redbud	Shrub Tree										5	5	5	2	2	2	3	3	3			
Cornus	Dogwood	Shrub Tree																					
Cornus amomum	Silky Dogwood	Shrub Tree																					
Cornus florida	Flowering Dogwood	Shrub Tree																					
Fraxinus pennsylvanica	Green Ash	Tree	2	2	2	4	4	4	4	4	4	2	2	2	4	4	4	2	2	2	3	3	3
Juglans nigra	Black Walnut	Tree																					
Lindera benzoin	Northern Spicebush	Shrub Tree															3						
Liriodendron tulipifera	Tulip Poplar	Tree																		1			1
Pinus taeda	Loblolly Pine	Tree																					
Platanus occidentalis	Sycamore	Tree	8	8	8	1	1	1				5	5	5							2	2	2
Salix sericea	Silky Willow	Shrub Tree																					
Sambucus canadensis	Common Elderberry	Shrub Tree																					
Ulmus americana	American Elm	Tree							4	4	4	1	1	1	2	2	2	5	5	5			
		Stem count	13	13	43	8	8	11	11	11	11	16	16	16	9	9	37	11	11	62	10	10	31
		size (ares)		1			1			1			1			1			1			1	
		size (ACRES)		0.02471			0.02471	_		0.02471	1		0.02471			0.02471	1		0.02471	1		0.0247	1
		Species count	3	3	4	3	3	3	3	3	3	5	5	5	4	4	5	4	4	6	4	4	5
		Stems per ACRE	526	526	1740	324	324	445	445	445	445	647	647	647	364	364	1497	445	445	2509	405	405	1255

						Annua	l Means	;												
Scientific Name	Common Name	Species Type	MY	′5 (8/20)20)	MY	′4 (9/20	19)	MY	'3 (9/20)18)	MY	'2 (9/20	17)	MY	1 (10/2	016)	MY	'0 (05/20	J16)
			PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum	Red Maple	Tree	26	26	168	35	35	144	34	34	99	41	41	45	45	45	45	50	50	50
Alnus serrulata	Tag Alder	Shrub Tree			2			1			3			1			1			
Betula nigra	River Birch	Tree	34	34	37	37	37	38	39	39	39	39	39	41	41	41	41	49	49	49
Cercis canadensis	Redbud	Shrub Tree	25	25	25	26	26	27	35	35	35	35	35	37	44	44	44	46	46	46
Cornus	Dogwood	Shrub Tree						1												
Cornus amomum	Silky Dogwood	Shrub Tree									5									
Cornus florida	Flowering Dogwood	Shrub Tree			1						5									
Fraxinus pennsylvanica	Green Ash	Tree	60	60	63	63	63	68	67	67	68	61	61	67	58	58	58	58	58	58
Juglans nigra	Black Walnut	Tree			2															
Lindera benzoin	Northern Spicebush	Shrub Tree			3															
Liriodendron tulipifera	Tulip Poplar	Tree			3			2			4			1						
Pinus taeda	Loblolly Pine	Tree			1															
Platanus occidentalis	Sycamore	Tree	32	32	33	33	33	35	33	33	35	33	33	33	33	33	33	30	30	30
Salix sericea	Silky Willow	Shrub Tree			5			2												
Sambucus canadensis	Common Elderberry	Shrub Tree						4												
Ulmus americana	American Elm	Tree	35	35	37	38	38	38	44	44	44	47	47	47	50	50	50	52	52	52
		Stem count	212	212	380	232	232	360	252	252	337	256	256	272	271	271	272	285	285	285
		size (ares)		21			21			21			21			21			21	
		size (ACRES)		0.5189			0.5189			0.5189	-		0.5189			0.5189			0.5189	
	Species c					6	6	11	6	6	10	6	6	8	6	6	7	6	6	6
		Stems per ACRE	409	409	732	447	447	694	486	486	649	493	493	524	522	522	524	549	549	549

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of planted stems excluding live stakes P-all: Number of planted stems including live stakes T: Total stems APPENDIX 4. Morphological Summary Data and Plots

Table 11a. Baseline Stream Data Summary

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

ine Reach 1, Reach 2a, Reach 2b																			
			Pre-Restorat	ion Condition				Reference Reach Data		D	esign					As-Bui	t/Baseline		
Parameter Ga	ige	Little Pine	Reach 1	Little Pine	e Reach 2a	Little Pi	ne Reach 2b	Meadow Fork	Little Pine Reach 1	Little Pir	ne Reach 2a	Little Pine	e Reach 2b	Little Pin	e Reach 1	Little Pin	e Reach 2a	Little Pine	ne Reach 2b
		Min	Max	Min	Max	Min	Max	Min Max	Min Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	M
sion and Substrate - Riffle																			
Bankfull Width (ft)		25.8	33.4		4.9		29.0	21.4	30.0		30.0		1.0	30.3	33.5	29.1	30.7	28.7	3
Floodprone Width (ft)		>20	00		200		>200	>200	>200		>200		200	133	>200	>	200	>	>200
Bankfull Mean Depth		1.7	1.8		2.1		1.8	2.1	1.8		1.8		8	1.6	1.8	1.6	1.9	2.0	
Bankfull Max Depth		3.3	3.3		3.7		2.2	3.1	2.5		2.5		2.5	2.7	3.2	2.6	3.9	3.1	
Bankfull Cross-sectional Area (ft ²)	/A	45.5	47.5		3.3		53.3	44.0	54.5		53.0		4.9	52.2	53.5	46.6	56.9	58.8	
Width/Depth Ratio		1.4	23.9		1.6		16.1	10.2	16.5		17.0		7.5	17.1	21.4	16.6	18.1	14.0	:
Entrenchment Ratio		>2.			2.2		>2.2	>2.2	>2.2		>2.2		2.2	4.4	>6.0	>6.5	>6.9	>6.3	
Bank Height Ratio		1.2	1.4		1.6		1.0	1.1	1.0		1.0	1	0	0.8	1.0		1.0		1.0
D50 (mm)		10.	.2	1	1.3		18.4					-		5	0.7	8	7.6	4	47.4
Riffle Length (ft)												-		28.4	80.5	37.8	68.3	30.44	1
Riffle Slope (ft/ft)		0.012	0.019	0.0095	0.031	0.028	0.045	0.0239	0.007 0.0125	0.0098	0.0175	0.0155	0.0278	0.0040	0.0275	0.0101	0.0274	0.0055	0
Pool Length (ft)	/A				•		•					-		44.5	96.5	38.7	108.9	40.92	9
Pool Max Depth (ft)	/A		-	-								-		3.5	5.8	4.7	5.8	2.6	
Pool Spacing (ft)		38	85	55	227	65	229		75 270	75	270	78	279	71	191	132	206	88	
Pool Volume (ft ³)																			
1																			
Channel Beltwidth (ft)		63	82	77	94	1	57		45 210	45	210	47	217	45	154	48	108	1	89
Radius of Curvature (ft)		25	59	39	58	34	70		60 210	60	120	62	124	60	96	63	77	82	
	/A	1.0	1.8	1.6	2.3	1.3	2.4		2.0 4.0	2.0	4.0	2.0	4.0	2.0	2.9	2.2	2.5	2.9	
Meander Length (ft)		86	140	110	186	100	134		210 360	210	360	217	372	207	313	288	337	334	
Meander Width Ratio		2.4	2.5	3.1	3.8		2.0		1.5 7.0	1.5	7.0	1.5	7.0	1.5	4.6	1.6	3.5		3.1
ate, Bed and Transport Parameters						1				-	1 · · ·			1		· · ·			
Ri%/Ru%/P%/G%/S%				I															
SC%/Sa%/G%/C%/B%/Be%		/	1																
416/435/450/484/495/4100	S	SC/4.5/10.2/61.2	2/1/13 //>20/18	SC/0 //1 3/7	7.8/180.0/362	SC/0 5/18 /	/79.2/143.4/256							0 22/0 48/2 0/	/88.2/146.7/362	0 22/1 0/37 9/	111.8/160.7/256	0.38/21.6/47.4	1/122 3/20
Reach Shear Stress (Competency) lb/ft ²	/A	0.8	, ,		.66		2.43		0.56		0.75	1	.20	0.46	0.51	0.69	0.74	1.21	, 122.3, 2
Max part size (mm) mobilized at bankfull		134			22		289		99		123		.20	0.40	0.51	0.05	0.74	1.21	
Stream Power (Capacity) W/m ²			Maria and a state of the stat	-			200				110	-							
onal Reach Parameters		1	1																
	-	3.9			1.3	1	4.4	4.4	3.9	1	4.3		1.4	1 -	3.9	1	4.3	1	4.4
Drainage Area (SM) Watershed Impervious Cover Estimate (%)	\vdash	<19			1%		<1%	<1%	<1%		4.3 <1%		1%		1%		+.3 :1%		4.4 <1%
Rosgen Classification	- I	C4			/C5		C4	E4	C4		C5		1% C4		24		C4		C4
Bankfull Velocity (fps)	\vdash	4.2	4 4.6		1.0		4.4	5.1	3.8		4.0		.4 I.1	3.6	3.8	4.1	4.3	3.6	
Bankfull Discharge (cfs)		4.2 20	-		15		225	224	205		215		25		05		4.5		225
Q-NFF regression (2-yr)		20.						224	203	-	215	2	23		05		.15		225
O- NC Mountain Regional Curve (cfs)	\vdash	28			06		308												
Q-USGS extrapolation (1.2-yr)	/A	17			91		193												
Q-0303 extrapolation (1.2-yr) Q-Mannings	-	199	211		13		235							188	204	199	231	219	
Valley Length (ft)	\vdash	199				1				-		1			184		376		476
					4,016				1,350 ¹		.025 ¹		81 ²	,	444		.083		493
														1 1/		1 1			
Channel Thalweg Length (ft)	\vdash	1 1	7				11		,		,			1	22	1		1	1 04
	F	0.0048	2 0.0058		0.0057	0.0049	1.1	0.0100	1,350 1.14 0.0050	1	.0070	1.	.01)111		.22 0049		.24		1.04 .0118

Bankfull Slope (ft/ft) SC: Silt/Clay <0.062 mm diameter particles (--): Data was not provided N/A: Not Applicable ¹Little Pine Reach 2b: Calculations only include reaches with a P1 or P2 approach

Table 11b. Baseline Stream Data Summary

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

UT2. UT2b

				Pre-Restorat	ion Condition		Reference Reach Data		Desi	gn			ļ	As-Built/Bas	eline	
Parameter	Gage	UT2 F	Reach 1	UT2 Re	each 2/3	UT2b	UT2a Reference	UT2 Reach 1 Lower	UT2 Re	ach 2	UT2b ²	UT2 Reach 1 Lower	UT2 R	each 2	U	2b ²
		Min	Max	Reach 2	Reach 3	Min Max	Min Max	Min Max	Min	Max	Min Max	Min Max	Min	Max	Min	Max
Dimension and Substrate - Riffle			INIX	incoden 2	Reach S	NULL NICK	I IIIII IIIIAA			ITIGA	IVIIII IVIAX		1 14111	IVIAX		IVIAX
Bankfull Width (ft)		4.9	9.7	6.1	7.0	8.3	12.6	9.0	11.	6	5.9	8.1	8.9	12.8	(5.7
Floodprone Width (ft)		5.4	29.9	49.3	41.0	10.6	31.0	98	17	195	15 30	28.4	21.5	>200	1	5.9
Bankfull Mean Depth		0.9	1.2	1.4	1.2	0.4	1.4	0.49	0.6	5	0.35	0.6	0.5	0.9	().5
Bankfull Max Depth		1	1.4	2.3	1.9	0.6	2.0	0.7	0.9	5	0.55	1.0	1.10	2.10	().9
Bankfull Cross-sectional Area (ft ²)	N/A	5.9	8.6	8.7	8.5	3.1	18.1	4.4	7.6	5	2.1	5.1	4.2	12.0	:	3.7
Width/Depth Ratio		4.1	11.0	4.2	5.7	22.6	8.7	18.5	17.	7	16.8	13.0	13.6	20.1	1	2.2
Entrenchment Ratio		1.1	3.1	8.1	5.9	1.3	2.4	10.9	1.5	16.8	2.5 5.1	3.5	2.0	>22.4		2.4
Bank Height Ratio		2.6	3.2	1.0	1.2	5.8	1.0	1.0	1.0)	1.0	1.0	1	0	:	L.O
D50 (mm)		1	10.7	:	15	16.0						56.9	44	53		43
rofile							I	1								
Riffle Length (ft)	-											10.7 25.0	16.8	29.3	4.4	23.0
Riffle Slope (ft/ft)		0.012	0.083	0.0327-0.063	0.0092-0.068	0.0178 0.081	0.0404 0.0517	0.0512 0.0681	0.026	0.046	0.0436 0.0750	0.0360 0.0853	0.0262	0.0575	0.0448	0.0659
Pool Length (ft)		0.012			010002 01000							5.0 22.3	13.3	46.3	3.1	14.3
Pool Max Depth (ft)	N/A						2.2 2.5					1.9 5.0	1.6	3.2	0.6	2.1
Pool Spacing (ft)	-	11.6	40.5	14-68	22-63	8 34	78	6.5 41.5	19	95	5 21	7 34	24	98	3	33
		11.0		14 00	22 03	5 54		0.5 41.5	15	33		, , , , , , , , , , , , , , , , , , , ,				1 33
Pool Volume (ft ³)																
				40.52 420		NI/A	1		45	<u> </u>			64			
Channel Beltwidth (ft)	-			49-52	120	N/A			45	68			61	66		
Radius of Curvature (ft)				10-48	8-27	N/A			29	39			19	63		
Rc:Bankfull Width (ft/ft)	N/A			1.6-7.9	1.1-3.9	N/A			2.5	3.4			2.1	4.9		
Meander Length (ft)	-			64-188	43-141	N/A			88	135			105	135		
Meander Width Ratio				8.0-8.5	17.1	N/A			3.9	5.9			7	5		
ubstrate, Bed and Transport Parameters	-															
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%	-	0.0/5 0/40 7/	104 5 106 7 100 0	00/00/115/5	la la .a .a							0.05/44.0/07.0	0001000		0 70/00 5/11 6	
d16/d35/d50/d84/d95/d100	N/A		/21.5/36.7/90.0		5.6/84.6/180.0	SC/11/16/52.6/128/180		4.48		<i>.</i>	1.00	0.25/11.0/27.6			0.78/28.5/41.6/	
Reach Shear Stress (Competency) Ib/ft ²	,		1.53		.73	0.75		1.49	0.9		1.38	1.95	0.83	1.69	1	.98
Max part size (mm) mobilized at bankfull		2	208	1	21	123		208	148	3	193					
Stream Power (Capacity) W/m ²																
dditional Reach Parameters																
Drainage Area (SM)			0.12	0.29	0.31	0.030	0.12	0.12	0.3		0.03	0.12		.31		.03
Watershed Impervious Cover Estimate (%)			<1%	<	1%	<1%	<1%	<1%	<19		<1%	<1%		1%		1%
Rosgen Classification			A4	E4b	E4	F4b	A/B4/1	B4a	C4		B4a	B4a	C	4b		84a
Bankfull Velocity (fps)		2.3	3.4	4.0	4.1	3.2		4.5	4.6		4.7	4.1	2.7	4.3	-	5.1
Bankfull Discharge (cfs)			20		35	10	20	20	35		10	20	3	35		10
Q-NFF regression (2-yr)																
Q- NC Mountain Regional Curve (cfs)	N/A		21		14	7										
Q-USGS extrapolation (1.2-yr)	11/7		10		21	3										
Q-Mannings			35	4	43	8						21	11.2	51.0	1	8.7
Valley Length (ft)	Ī											3	.988			31
Channel Thalweg Length (ft)	Ī		5	270 ¹		553		433	126		241	433		318		53
Sinuosity		1	1.1	1.3	2.1	1.1		1.05	1.2	0	1.04	1.05	1	2		l.1
Water Surface Slope (ft/ft) ²		0.0	0436	0.0290	0.0136	0.0406	0.0433	0.0501	0.02	39	0.0639	0.0560	0.0	231	0.0	0616
Bankfull Slope (ft/ft)		0.0	0476	0.0363	0.028	0.0667		0.0525	0.02	80	0.0667	0.0563	0.0	237	0.0)536

SC: Silt/Clay <0.062 mm diameter particles FS: Fine Sand 0.125-0.250mm diameter particles

(---): Data was not provided N/A: Not Applicable

¹entire length of UT2

² UT2b: Calculations only include reach with a P2 approach

Table 12a. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section) Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903

Monitoring Year 5 - 2020

	Cro	ss-Sectio	on 1, Little	e Pine Re	ach 1 (Ri	ffle)	Cro	oss-Sectio	on 2, Littl	e Pine Re	each 1 (Po	ool)	Cro	ss-Sectio	on 3, Little	e Pine Re	ach 1 (Ri	ffle)
Dimension ^{1,2}	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MY4	MY5
Bankfull Elevation (ft)	2,535.4	2,535.4	2,535.4	2,535.7	2535.8	2536.1	2,533.2	2,533.2	2,533.2	2,533.5	2,534.0	2,534.4	2,532.9	2,532.9	2,532.9	2,533.2	2,533.4	2,533.5
Low Bank Elevation (ft)	2,535.4	2,535.4	2,535.5	2,535.7	2535.9	2536.1	2,533.2	2,533.2	2,533.1	2,533.5	2,534.0	2,534.4	2,532.4	2,532.2	2,532.5	2,533.2	2,533.5	2,533.9
Bankfull Width (ft)	30.3	29.9	30.8	29.5	29.1	25.3	30.6	30.9	30.9	29.8	29.5	29.8	33.5	32.9	32.3	29.5	23.7	25.5
Floodprone Width (ft)	132.9	135.1	135.1	>106	>106	>106							>200	>200	>200	>215	>215	>214
Bankfull Mean Depth (ft)	1.8	1.7	1.7	1.9	1.9	2.1	2.2	2.1	2.2	2.3	2.6	3.3	1.6	1.6	1.6	1.8	2.3	2.4
Bankfull Max Depth (ft)	2.7	2.8	3.2	3.1	3.1	3.7	4.3	3.9	4.4	4.8	5.2	5.6	3.2	3.1	3.0	3.5	3.5	4.4
Bankfull Cross Sectional Area (ft ²)	53.5	49.8	52.8	55.9	55.6	54.2	68.0	65.9	66.9	69.4	76.0	97.0	52.2	51.8	52.2	53.6	54.7	61.8
Bankfull Width/Depth Ratio	17.1	18.0	18.0	15.6	15.3	11.8							21.4	20.9	20.0	16.3	10.3	10.5
Bankfull Entrenchment Ratio	4.4	4.5	4.4	>3.6	>3.6	>4.2							>6.0	>6.1	>6.2	>7.3	>9.1	>8.4
Bankfull Bank Height Ratio	1.0	1.0	1.0	1.0	1.0	1.0							<1.0	<1.0	<1.0	1.0	1.0	1.1
	Cros	s-Sectio	n 4, Little	Pine Rea	ach 2a (Ri	iffle)	Cros	ss-Sectio	n 5, Little	Pine Rea	ach 2a (Ri	iffle)	Cro	ss-Sectio	n 6, Little	e Pine Re	ach 2a (P	ool)
Dimension ^{1,2}	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MY4	MY5
Bankfull Elevation (ft)	2,527.4	2,527.4	2,527.4	2,527.3	2,527.1	2,526.6	2,525.4	2,525.4	2,525.4	2,525.2	2,524.9	2,524.4	2,524.8	2,524.8	2,524.8	2,524.4	2,525.2	2,524.8
Low Bank Elevation (ft)	2,527.4	2,527.5	2,527.5	2,527.7	2,527.8	2,527.6	2,525.4	2,525.3	2,525.4	2,525.4	2,525.8	2,524.9	2,524.8	2,524.5	2,524.7	2,524.4	2,525.2	2,524.8
Bankfull Width (ft)	29.1	29.3	28.5	31.0	27.9	25.4	30.7	31.3	31.0	31.4	31.5	29.2	35.4	35.5	35.4	27.7	32.7	26.9
Floodprone Width (ft)	>200	>200	>200	>189	>189	>189	>200	>200	>200	>90	>79.5	>93						
Bankfull Mean Depth (ft)	1.6	1.6	1.8	1.9	2.2	2.8	1.9	1.8	1.9	2.0	2.6	2.5	2.6	2.4	2.4	2.4	3.0	3.6
Bankfull Max Depth (ft)	2.6	2.6	2.9	3.9	4.1	4.4	3.9	3.6	3.5	3.6	5.4	3.6	5.7	5.1	5.3	4.6	5.5	6.2
Bankfull Cross Sectional Area (ft ²)	46.6	46.4	49.8	57.8	62.6	71.1	56.9	56.7	58.2	63.1	82.3	72.2	93.4	83.6	86.5	67.4	98.7	97.4
Bankfull Width/Depth Ratio	18.1	18.5	16.2	16.6	12.5	9.1	16.6	17.2	16.5	15.6	12.0	11.8						
Bankfull Entrenchment Ratio	>6.9	>6.8	>7.0	>6.1	>6.8	>7.4	>6.5	>6.4	>6.5	>2.9	>2.5	>3.2						
Bankfull Bank Height Ratio	1.0	1.0	1.0	1.1	1.2	1.3	1.0	1.0	1.0	1.1	1.2	1.2						
	Cros	ss-Sectio	n 7, Little	e Pine Rea	ach 2b (P	ool)	Cros	ss-Sectio	n 8, Little	Pine Rea	ach 2b (Ri	iffle)	Cros	ss-Sectio	n 9, Little	Pine Rea	ach 2b (R	iffle)
Dimension ^{1,2}	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MY4	MY5
Bankfull Elevation (ft)	2,522.0	2,522.0	2,522.0	2,522.2	2,522.5	2,522.4	2,520.1	2,520.1	2,520.1	2,519.9	2,519.7	2,519.5	2,519.5	2,519.5	2,519.5	2,519.3	2,519.3	2,519.0
Low Bank Elevation (ft)	2,522.0	2,522.0	2,522.2	2,522.2	2,522.5	2,522.4	2,520.1	2,520.1	2,520.2	2,520.3	2,520.4	2,520.3	2,519.5	2,519.5	2,519.4	2,519.5	2,519.6	2,519.4
Bankfull Width (ft)	35.3	35.5	35.2	39.4	40.3	38.1	28.7	29.8	29.4	30.3	31.8	29.8	31.9	30.7	29.3	31.2	32.7	28.8
Floodprone Width (ft)							>200	>200	>200	>121	>121	>121	>200	>200	>200	>110	>110	>110
Bankfull Mean Depth (ft)	2.9	2.8	2.8	2.5	2.6	2.6	2.1	2.1	2.0	2.3	2.4	2.6	2.0	2.0	2.1	2.2	2.3	2.7
Bankfull Max Depth (ft)	5.4	5.6	5.4	5.4	5.5	5.5	3.4	3.6	3.4	4.2	4.5	4.7	3.1	3.2	3.0	3.7	3.9	4.2
Bankfull Cross Sectional Area (ft ²)	103.7	100.0	97.2	96.9	104.8	98.1	58.8	61.2	59.8	68.3	77.5	77.4	64.2	62.3	60.2	67.4	74.3	76.6
Bankfull Width/Depth Ratio							14.0	14.5	14.4	13.5	13.1	11.5	15.9	15.2	14.2	14.4	14.3	10.9
Bankfull Entrenchment Ratio							>7.0	>6.7	>6.8	>4.0	>3.8	>4.1	>6.3	>6.5	>6.9	>3.5	>3.4	>3.8
Bankfull Bank Height Ratio							1.0	1.0	1.0	1.1	1.2	1.2	1.0	1.0	1.0	1.0	1.1	1.1

---: not applicable ¹Prior to MY3, bankfull dimensions were calculated using a fixed bankfull elevation.

2MY3-MY5 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by NCIRT and NCDMS (9/2018). The remainder of the bankfull dimensions are calculated based on the current year's low bank height. MY3 dimensions were updated in MY4.

Table 12b. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section) Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903

Monitoring Year 5 - 2020

		Cross	-Section	10, UT2b	(Pool)			Cross-	Section 1	11, UT2b	(Riffle)		Cros	s-Sectior	າ 12, UT2	Reach 1	Lower (R	iffle)
Dimension ^{1,2}	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MY4	MY5
Bankfull Elevation (ft)	2,570.0	2,570.0	2,570.0	2,570.1	2,570.2	2,570.0	2,566.4	2,566.4	2,566.4	2,566.4	2,566.5	2,566.7	2,573.8	2,573.8	2,573.8	2,573.8	2,573.9	2,574.0
Low Bank Elevation (ft)	2,570.0	2,569.7	2,570.0	2,570.1	2,570.2	2,570.0	2,566.4	2,566.4	2,566.2	2,566.3	2,566.3	2,566.4	2,573.8	2,573.7	2,573.7	2,573.9	2,573.8	2,573.9
Bankfull Width (ft)	5.9	6.0	6.1	7.3	7.6	6.4	6.7	6.3	6.6	6.3	6.4	3.2	8.1	8.4	8.6	8.9	7.1	4.9
Floodprone Width (ft)							15.9	17.7	17.9	14.3	14.1	14.9	28.4	30.0	30.0	31.4	29.5	32.7
Bankfull Mean Depth (ft)	1.0	2.3	2.4	2.3	2.3	2.3	0.5	0.7	0.7	0.5	0.4	0.5	0.6	0.7	0.6	0.7	0.6	1.0
Bankfull Max Depth (ft)	1.7	3.4	3.3	3.4	3.3	2.9	0.9	1.1	1.1	0.8	0.8	0.8	1.0	1.3	1.2	1.4	1.2	1.5
Bankfull Cross Sectional Area (ft ²)	5.7	14.0	14.9	16.6	17.3	14.9	3.7	4.3	4.5	3.0	2.3	1.5	5.1	5.7	5.4	5.9	4.4	4.9
Bankfull Width/Depth Ratio							12.2	9.1	9.6	13.2	17.9	6.7	13.0	12.5	13.9	13.4	11.5	4.8
Bankfull Entrenchment Ratio							2.4	2.8	2.7	2.3	2.2	4.7	3.5	3.6	3.5	3.5	4.2	6.7
Bankfull Bank Height Ratio							1.0	1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	<1.0	1.1	<1.0	1.0
	Cros	ss-Sectio	n 13, UT2	Reach 1	Lower (P	Pool)	(Cross-Sec	tion 14, I	UT2 Reac	h 2 (Riffl	e)	(Cross-Sec	tion 15,	UT2 Read	h 2 (Pool)
Dimension ^{1,2}	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MY4	MY5
Bankfull Elevation (ft)	2,573.3	2,573.3	2,573.3	2,573.4	2,573.3	2,573.4	2,547.2	2,547.2	2,547.2	2,547.5	2,547.6	2,546.8	2,539.1	2,539.1	2,539.1	2,539.1	2,539.2	2,539.2
Low Bank Elevation (ft)	2,573.3	2,573.3	2,573.3	2,573.4	2,573.3	2,573.4	2,547.2	2,547.2	2,547.1	2,547.4	2,547.7	2,547.4	2,539.1	2,539.0	2,539.2	2,539.1	2,539.2	2,539.2
Bankfull Width (ft)	9.8	10.1	10.4	10.2	10.0	9.9	10.8	8.0	9.2	6.9	7.6	5.9	12.2	11.6	12.0	11.4	11.4	9.7
Floodprone Width (ft)							21.5	23.2	23.5	25.0	25.0	26.0						
Bankfull Mean Depth (ft)	1.3	1.2	1.4	1.6	1.5	1.7	0.5	0.8	0.7	0.7	0.8	1.5	1.5	1.0	1.2	1.2	1.0	1.9
Bankfull Max Depth (ft)	2.2	1.9	2.5	3.0	2.8	2.9	1.1	1.2	1.2	1.2	1.3	2.6	3.1	1.7	2.2	1.9	1.7	2.7
Bankfull Cross Sectional Area (ft ²)	12.8	12.5	15.0	16.6	15.0	17.3	5.9	6.6	6.6	4.6	6.3	8.8	18.7	11.9	14.4	13.9	11.4	18.8
Bankfull Width/Depth Ratio							20.1	9.7	13.0	10.5	9.3	3.9						
Bankfull Entrenchment Ratio							2.0	2.9	2.5	3.6	3.3	4.4						
Bankfull Bank Height Ratio							1.0	1.0	<1.0	<1.0	1.0	1.3						
	C	Cross-Sec	tion 16, l	JT2 Reacl	h 2 (Riffle	e)	(Cross-Sec	tion 17, l	UT2 Reac	h 2 (Riffl	e)	(Cross-Sec	tion 18,	UT2 Read	h 2 (Pool)
Dimension ^{1,2}	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MY4	MY5
Bankfull Elevation (ft)	2,535.0	2,535.0	2,535.0	2,535.4	2,535.5	2,535.3	2,531.2	2,531.2	2,531.2	,	2,531.3	2,532.0	2,530.4	2,530.4	2,530.4	2,530.0	2,530.4	2,530.5
Low Bank Elevation (ft)	2,535.0	2,535.0	2,535.1	2,535.5	2,535.6	2,535.7	2,531.2	2,531.2	2,531.2	2,531.2	2,531.3	2,531.7	2,530.4	2,579.7	2,530.1	2,530.0	2,530.4	2,530.5
Bankfull Width (ft)	8.9	10.0	6.9	8.7	6.4	7.1	12.8	12.9	13.6	12.6	11.2	10.4	19.3	19.5	21.4	8.5	8.8	7.3
Floodprone Width (ft)	>200	>200	>200	>39.5	>40.6	>42	>200	>200	>200	>71.0	>71.0	>71.0						
Bankfull Mean Depth (ft)	0.5	0.5	0.4	0.6	0.8	1.0	0.9	0.9	0.9	1.0	1.0	0.8	0.8	0.8	0.8	1.0	1.0	1.1
Bankfull Max Depth (ft)	1.1	0.8	0.6	0.9	1.2	1.5	2.1	1.8	1.9	2.1	1.9	1.2	2.0	2.3	2.1	2.4	2.0	1.5
Bankfull Cross Sectional Area (ft ²)	4.2	5.0	2.8	4.9	4.8	6.7	12.0	12.0	12.0	12.0	11.4	8.3	15.8	16.3	16.9	8.9	8.5	8.4
Bankfull Width/Depth Ratio	19.2	19.9	17.1	15.6	8.5	7.4	13.6	13.8	15.4	13.2	11.0	13.0						
Bankfull Entrenchment Ratio	>22.4	>20.0	>28.9	>4.5	>6.3	>6.0	>15.7	>15.5	>14.7	>5.6	>6.3	>6.8						
Bankfull Bank Height Ratio	1.0	1.1	1.2	1.1	1.1	1.4	1.0	1.0	1.0	1.0	1.0	<1.0						

---: not applicable ¹Prior to MY3, bankfull dimensions were calculated using a fixed bankfull elevation.

2MY3-MY5 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by NCIRT and NCDMS (9/2018). The remainder of the bankfull dimensions are calculated based on the current year's low bank height. MY3 dimensions were updated in MY4.

Table 13a. Monitoring Data - Stream Reach Data Summary

Little Pine III Stream & Wetland Restoration Project

DMS Project No. 94903

Monitoring Year 5 - 2020

Little Pine Reach 1

Parameter	As-Built,	/Baseline	М	Y1	М	1Y2	M	1Y3	N	1Y4	N	Y5
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle												
Bankfull Width (ft)	30.3	33.5	29.9	32.9	30.8	32.3	29.5	29.5	23.7	29.1	25.3	25.5
Floodprone Width (ft)	133	>200	135	>200	135	>200	>106	>215	>106	>215	106	>214
Bankfull Mean Depth	1.6	1.8	1.6	1.7	1.6	1.7	1.8	1.9	1.9	2.3	2.1	2.4
Bankfull Max Depth	2.7	3.2	2.8	3.1	3.0	3.2	3.1	3.5	3.1	3.5	3.7	4.4
Bankfull Cross-sectional Area (ft ²)	52.2	53.5	49.8	51.8	52.2	52.8	53.6	55.9	54.7	55.6	54.2	61.8
Width/Depth Ratio	17.1	21.4	18	20.9	18	20	15.6	16.3	10.3	15.3	10.5	11.8
Entrenchment Ratio	4.4	>6.0	4.5	>6.1	4.4	>6.2	>3.6	>6.9	>3.6	>9.1	4.2	8.4
Bank Height Ratio	0.8	1.0	0.8	1.0	0.9	1.0	1	0	1	0	1.0	1.1
D50 (mm)	50).7	5	6.9	4	5.0	4	8.5	2	6.9	4	5.0
Profile												
Riffle Length (ft)	28	81	21	47	32	76	12	50	20	96	33	70
Riffle Slope (ft/ft)	0.0040	0.0275	0.0064	0.0283	0.0052	0.0183	0.0029	0.0191	0.0067	0.0280	0.0013	0.0205
Pool Length (ft)	44	96	66	176	49	177	58	176	63	166	36	182
Pool Max Depth (ft)	3.5	5.8	3.0	4.7	3.9	6.2	4.2	5.8	4.1	6.4	3.9	6.5
Pool Spacing (ft)	71	191	77	224	94	210	81	225	73	223	83	213
Pool Volume (ft ³)												
Pattern												
Channel Beltwidth (ft)	45	154										
Radius of Curvature (ft)	60	96										
Rc:Bankfull Width (ft/ft)	2.0	2.9										
Meander Wave Length (ft)	207	313										
Meander Width Ratio	1.5	4.6										
Additional Reach Parameters												
Rosgen Classification		4		64		24		24		24		24
Channel Thalweg Length (ft)	,	144	1,4	444	1,4	444	1,4	444	1,	444	1,-	444
Sinuosity (ft)		22										
Water Surface Slope (ft/ft)		049		049		050		049		060		054
Bankfull Slope (ft/ft)	0.0	051	0.0	043	0.0	045	0.0	048	0.0	059	0.0	054
Ri%/Ru%/P%/G%/S%												
SC%/Sa%/G%/C%/B%/Be%												
d16/d35/d50/d84/d95/d100	0.22/0.48/2.0	0/88/147/362	0.22/3.4/22	/81/123/362	0.13/0.38/11/	/789/180/1024	0.35/7.45/16	5/90/128/180	0.1/0.2/8.7/7	7.7/113.6/180	0.4/1.8/23.8/8	7.8/151.8/1024
% of Reach with Eroding Banks	0	%	C	1%	1	.%	3	\$%	6	5%	2	%

Table 13b. Monitoring Data - Stream Reach Data Summary

Little Pine III Stream & Wetland Restoration Project

DMS Project No. 94903 Monitoring Year 5 - 2020

Little Pine Reach 2a

Parameter	As-Built	/Baseline	N	1Y1	M	1Y2	N	1Y3	N	1¥4	N	1Y5
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle												
Bankfull Width (ft)	29.1	30.7	29.3	31.3	28.5	31.0	31.0	31.4	27.9	31.5	25.4	29.2
Floodprone Width (ft)	>2	200	>	200		200	>90	>189	>79.5	>189	>93	>189
Bankfull Mean Depth	1.6	1.9	1.6	1.8	1.8	1.9	1.9	2.0	2.2	2.6	2.5	2.8
Bankfull Max Depth	2.6	3.9	2.6	3.6	2.9	3.5	3.6	3.9	4.1	5.4	3.6	4.4
Bankfull Cross-sectional Area (ft ²)	46.6	56.9	46.4	56.7	49.8	58.2	57.8	63.1	62.6	82.3	71.1	72.2
Width/Depth Ratio	16.6	18.1	17.2	18.5	16.2	16.5	15.6	16.6	12.0	12.5	9.1	11.8
Entrenchment Ratio	>6.5	>6.9	>6.4	>6.8	>6.5	>7.0	>2.9	>6.1	>2.5	>6.8	>3.2	>7.4
Bank Height Ratio		0	1	L.O	1	1.0	1	.1	1	.2	1.2	1.3
D50 (mm)	8	7.6	7	2.4	7	5.9	8	5.0	7.	2.1	6	4.0
Profile												
Riffle Length (ft)	38	68	19	49	27	55	26	54	29	60	22	55
Riffle Slope (ft/ft)	0.0101	0.0274	0.0112	0.0471	0.0143	0.0280	0.0139	0.0300	0.0065	0.0316	0.0015	0.0247
Pool Length (ft)	39	109	39	145	66	186	84	178	77	218	69	185
Pool Max Depth (ft)	4.7	5.8	4.3	6.6	4.0	6.7	4.3	6.0	4.2	6.7	4.7	7.5
Pool Spacing (ft)	132	206	78	206	121	279	57	263	96	268	74	252
Pool Volume (ft ³)												
Pattern							-		•		-	
Channel Beltwidth (ft)	48	108										
Radius of Curvature (ft)	63	77										
Rc:Bankfull Width (ft/ft)	2.2	2.5										
Meander Wave Length (ft)	288	337										
Meander Width Ratio	1.6	3.5										
Additional Reach Parameters					-				-			
Rosgen Classification		64		C4		C4		24		C4		24
Channel Thalweg Length (ft)		083	1,	083	1,0	083	1,0	083	1,	083	1,	083
Sinuosity (ft)		.24										
Water Surface Slope (ft/ft)		072		073		075		074		0076		076
Bankfull Slope (ft/ft)	0.0	074	0.0	0059	0.0	067	0.0	070	0.0	0070	0.0	073
Ri%/Ru%/P%/G%/S%												
SC%/Sa%/G%/C%/B%/Be%												
d16/d35/d50/d84/d95/d100		/112/161/256		/90/157/1024		/121/168/1024		3/136/274/512		.03.6/161.1/256		53.5/227.6/362
% of Reach with Eroding Banks	C	1%	()%	2	2%	3	3%	5	5%	3	\$%

Table 13c. Monitoring Data - Stream Reach Data Summary

Little Pine III Stream & Wetland Restoration Project

DMS Project No. 94903 Monitoring Year 5 - 2020

Little Pine Reach 2b

Parameter	As-Built,	/Baseline	N	IY1	М	1Y2	М	Y3	MY4		MY5	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle												
Bankfull Width (ft)	28.7	31.9	29.8	30.7	29.3	29.4	30.3	31.2	31.8	32.7	28.8	29.8
Floodprone Width (ft)	>2	200	>200		>200		>110	>121	>110	>121	>110	>121
Bankfull Mean Depth	2.0	2.1	2.0	2.1	2.0	2.1	2.2	2.3	2.3	2.4	2.6	2.7
Bankfull Max Depth	3.1	3.4	3.2	3.6	3.0	3.4	3.7	4.2	3.9	4.5	4.2	4.7
Bankfull Cross-sectional Area (ft ²)	58.8	64.2	61.2	62.3	59.8	60.2	67.4	68.3	74.3	77.5	76.6	77.4
Width/Depth Ratio	14.0	15.9	14.5	15.2	14.2	14.4	13.5	14.4	13.1	14.3	10.9	11.5
Entrenchment Ratio	>6.3	>7	>6.5	>6.7	>6.8	>6.9	>3.5	>4.0	>3.4	>3.8	>3.8	>4.1
Bank Height Ratio		0		0		0	1.0	1.1	1.1	1.2	1.1	1.2
D50 (mm)	4	7.4	7	2.0	70	0.2	62	2.1	6	5.7	56.1	
Profile												
Riffle Length (ft)	30	132	26	102	26	44	35	59	28	85	20	52
Riffle Slope (ft/ft)	0.0055	0.0236	0.0169	0.0254	0.0116	0.0177	0.0040	0.0133	0.0070	0.0242	0.0062	0.0218
Pool Length (ft)	41	99	55	153	26	149	24	152	76	140	55	152
Pool Max Depth (ft)	2.6	5.4	3.8	6.3	3.7	5.0	3.6	5.5	4.3	6.8	4.4	6.6
Pool Spacing (ft)	88	190	12	129	8	175	69	162	80	287	52	191
Pool Volume (ft ³)												
Pattern											-	
Channel Beltwidth (ft)	8	39										
Radius of Curvature (ft)	82	124										
Rc:Bankfull Width (ft/ft)	2.9	3.9										
Meander Wave Length (ft)	334	329										
Meander Width Ratio	3	.1										
Additional Reach Parameters												
Rosgen Classification		24	C4		C4		C4		C4		C4	
Channel Thalweg Length (ft)	4	93	4	93	493		493		493		493	
Sinuosity (ft)	1.	.04										
Water Surface Slope (ft/ft)	0.0118		0.0	101	0.0	082	0.0	105	0.0121		0.0118	
Bankfull Slope (ft/ft)	0.0101		0.0	107	0.0	103	0.0102		0.0101		0.0096	
Ri%/Ru%/P%/G%/S%												
SC%/Sa%/G%/C%/B%/Be%												
d16/d35/d50/d84/d95/d100	0.38/22/47/	122/209/362	0.22/10/29/	111/171/362	0.3/8.0/29.0/107.3/180/362		0.71/5.6/28/93/152/512		0.2/1.0/8.9/94.5/136.1/256		0.4/2.0/22.6/107.3/168.1/36	
% of Reach with Eroding Banks	0	1%	0)%	0)%	3	%	6%		7	7%

Table 13d. Monitoring Data - Stream Reach Data Summary

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903

Monitoring Year 5 - 2020

UT2 Reach 1 Lower

Parameter	As-Built,	Baseline	м	Y1	M	Y2	M	Y3	MY4		MY5	
	Min	Max	Min	Max	Min	Max	Min	Max	Min Max		Min	Max
imension and Substrate - Riffle												
Bankfull Width (ft)	8	.1	8.4		8.6		8.9		7.1		4.9	
Floodprone Width (ft)	28		30.0		30.0		31.4		29.5		32.7	
Bankfull Mean Depth		.6	0.7		0.6		0.7		0.6		1.0	
Bankfull Max Depth	1	.0	1.3		1.2		1.4		1.2		1.5	
Bankfull Cross-sectional Area (ft ²)	5	.1	5.7		5.4		5.9		4.4		4.9	
Width/Depth Ratio	13	8.0	12	2.5	13.9		13	3.4	11	L.5	4.8	
Entrenchment Ratio	3	.5	3	.6	3.5		3	.5	4	.2	6.7	
Bank Height Ratio	1	.0	1.0		0.9		1.1		<1.0		1.0	
D50 (mm)	56	5.9	39	9.8	38	8.7	43	3.8	42	2.9	26	5.3
rofile												
Riffle Length (ft)	11	25	13	39	5	24	6	20	10	22	6	38
Riffle Slope (ft/ft)	0.0360	0.0853	0.0136	0.0730	0.0253	0.0793	0.0109	0.0624	0.0234	0.0884	0.0255	0.1066
Pool Length (ft)	5	22	2	15	4	17	5	21	2	25	3	18
Pool Max Depth (ft)	1.9	5.0	1.0	2.9	2.0	3.8	1.1	3.5	1.4	2.6	0.9	2.5
Pool Spacing (ft)	7	34	8	52	6	53	6	34	7	140	5	69
Pool Volume (ft ³)												
attern												
Channel Beltwidth (ft)	-											
Radius of Curvature (ft)	-											
Rc:Bankfull Width (ft/ft)	-	-										
Meander Wave Length (ft)	-											
Meander Width Ratio	-	-										
dditional Reach Parameters												
Rosgen Classification	B	4a	B4a		B4a		B4a		B4a		B4a	
Channel Thalweg Length (ft)	4	33	433		433		433		433		433	
Sinuosity (ft)	1.	05										
Water Surface Slope (ft/ft)	0.0560		0.0477		0.0481		0.0475		0.0502		0.0509	
Bankfull Slope (ft/ft)	0.0	563	0.0483		0.0	485	0.0455		0.0451		0.0484	
Ri%/Ru%/P%/G%/S%												
SC%/Sa%/G%/C%/B%/Be%		-								_		
d16/d35/d50/d84/d95/d100	0.25/11/28/	96/143/256	6.1/14/23/	75/153/256	0.7/11/28/	76/118/256	1.2/18/37/1	13/180/362	1.6/23.8/35.1/	94.3/122.1/256	17.7/34.1/47.3	3/123/175/30
% of Reach with Eroding Banks	0	%	6%		2	%	1%		6%		6%	

Table 13e. Monitoring Data - Stream Reach Data Summary

Little Pine III Stream & Wetland Restoration Project

DMS Project No. 94903

Monitoring Year 5 - 2020

UT2 Reach 2

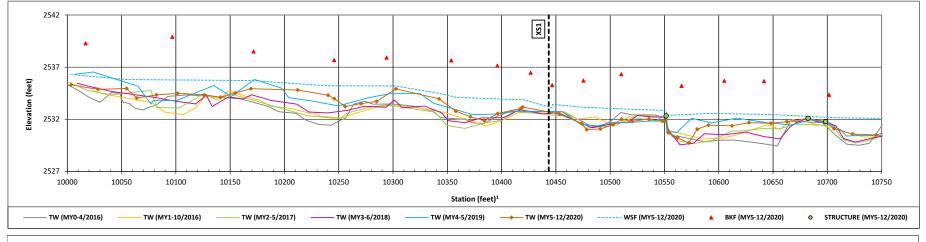
Parameter	As-Built	/Baseline	M	Y1	N	1Y2	N	1Y3	N	1Y4	MY5	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle												
Bankfull Width (ft)	8.9	12.8	8.0	12.9	6.9	13.6	6.9	12.6	6.4	11.2	5.9	10.4
Floodprone Width (ft)	22	>200	23	>200	24	>200	25	>71	25	>71	26	>71
Bankfull Mean Depth	0.5	0.9	0.5	0.9	0.4	0.9	0.6	1.0	0.8	1.0	0.8	1.5
Bankfull Max Depth	1.1	2.1	0.8	1.8	0.6	1.9	0.9	2.1	1.2	1.9	1.2	2.6
Bankfull Cross-sectional Area (ft ²)	4.2	12.0	5.0	12.0	2.8	12.0	4.6	12.0	4.8	11.4	6.7	8.8
Width/Depth Ratio	13.6	20.1	9.7	19.9	13.0	17.1	10.5	15.6	8.5	11.0	3.9	13.0
Entrenchment Ratio	2.0	>22.4	2.9	>20.0	2.5	>28.9	3.6	>5.6	3.3	>6.3	4.4	>6.8
Bank Height Ratio	1	0	1	0	0.9	1.2	<1.0	1.1	1.0	1.1	1.3	1.4
D50 (mm)	44	53	15	90	34.5	34.8	45.0	48.2	32.0	39.3	29.8	36.4
Profile												
Riffle Length (ft)	17	29	10	36	5	62	4	68	6	36	6	56
Riffle Slope (ft/ft)	0.0262	0.0575	0.0141	0.0658	0.0093	0.0773	0.0122	0.1161	0.0111	0.0725	0.0046	0.0811
Pool Length (ft)	13	46	4	40	6	35	4	39	6	67	6	41
Pool Max Depth (ft)	1.6	3.2	1.5	3.8	1.1	4.6	1.9	4.8	1.5	3.2	1.6	3.7
Pool Spacing (ft)	24	98	8	113	10	207	7	156	3	162	15	160
Pool Volume (ft ³)												
Pattern							-		•			
Channel Beltwidth (ft)	61	66										
Radius of Curvature (ft)	19	63										
Rc:Bankfull Width (ft/ft)	2.1	4.9										
Meander Wave Length (ft)	105	135										
Meander Width Ratio	7	5										
Additional Reach Parameters												
Rosgen Classification		4b	C4b		C4b		C4b		C4b		C4b	
Channel Thalweg Length (ft)		318	1,	318	1,318		1,318		1,318		1,318	
Sinuosity (ft)		2										
Water Surface Slope (ft/ft)	0.0231		0.0225			0235	0.0237		0.0240		0.0249	
Bankfull Slope (ft/ft)	0.0237		0.0	214	0.0)245	0.0247		0.0241		0.0	232
Ri%/Ru%/P%/G%/S%												
SC%/Sa%/G%/C%/B%/Be%												
d16/d35/d50/d84/d95/d100		/96/143/256		75/153/256		76/118/256	1.2/18/37/113/180/362			94.3/122.1/256	17.7/34.1/47.3/123/175/362	
% of Reach with Eroding Banks	C	1%	C	1%	4	1%	7%		2	2%	4%	

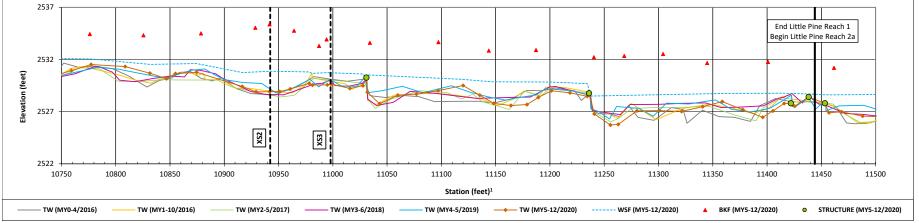
Table 13f. Monitoring Data - Stream Reach Data Summary

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903

Monitoring Year 5 - 2020

Monitoring rear 5 2020

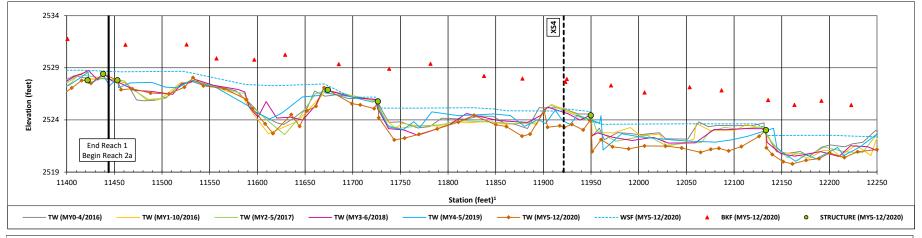

UT2b

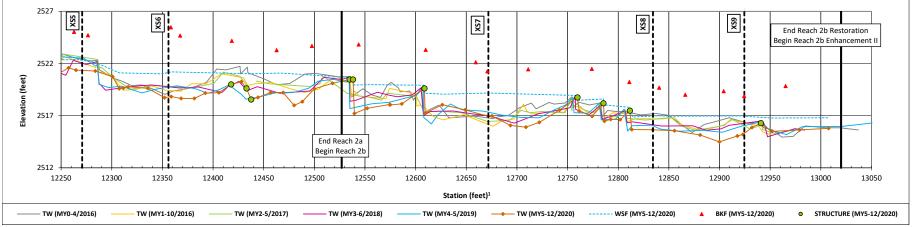

Parameter	As-Built/	Baseline	M	IY1	м	Y2	М	Y3	MY4		MY5	
	Min	Max	Min	Max	Min	Max	Min	Max	Min Max		Min	Max
imension and Substrate - Riffle												
Bankfull Width (ft)	6	.7	6.3		6.6		6.3		6.4		3.2	
Floodprone Width (ft)	15	5.9	17.7		17.9		14.3		14.1		14.9	
Bankfull Mean Depth	0		0.7		0.7		0.5		0.4		0.5	
Bankfull Max Depth	0		1.1		1.1		0.8		0.8		0.8	
Bankfull Cross-sectional Area (ft ²)	3	.7	4	.3	4.5		3	.0	2	.3	1.5	
Width/Depth Ratio	12	.2	9	.1	9	9.6		3.2	17	7.9	6.7	
Entrenchment Ratio	2	.4	2	.8	2.7		2	.3	2	.2	4.7	
Bank Height Ratio	1	.0	1.0		0.9		<1.0		<1.0		<1.0	
D50 (mm)	43	8.0	3	5.9	32	2.0	23	3.5	24	1.4	10	0.5
rofile												
Riffle Length (ft)	4	23	7	24	7	25	6	32	5	21	4	45
Riffle Slope (ft/ft)	0.0448	0.0659	0.0276	0.0451	0.0127	0.0702	0.0125	0.0494	0.0117	0.0394	0.0160	0.0499
Pool Length (ft)	3	14	3	8	4	15	3	11	3	9	3	12
Pool Max Depth (ft)	0.6	2.1	2.0	3.9	0.8	3.8	0.9	4.0	0.7	3.5	1.0	3.3
Pool Spacing (ft)	3	33	4	30	3	30	2	32	3	30	2	30
Pool Volume (ft ³)												
ittern												
Channel Beltwidth (ft)	-											
Radius of Curvature (ft)	-											
Rc:Bankfull Width (ft/ft)	-											
Meander Wave Length (ft)	-											
Meander Width Ratio	-											
dditional Reach Parameters									-			
Rosgen Classification	B		B4a		B4a		B4a		B4a		B4a	
Channel Thalweg Length (ft)	2		2	53	253		253		253		253	
Sinuosity (ft)	1.											
Water Surface Slope (ft/ft)	0.0616		0.0614		0.0		0.0608		0.0610		0.0591	
Bankfull Slope (ft/ft)	0.0	536	0.0608		0.0	612	0.0612		0.0602		0.0	599
Ri%/Ru%/P%/G%/S%												
SC%/Sa%/G%/C%/B%/Be%												
d16/d35/d50/d84/d95/d100	0.78/29/42/			/82/128/362			0.50/6.7/14/100/161/256		8.9/20.6/29.8/81.3/119.3/180			
% of Reach with Eroding Banks	0	%	C	1%	0	%	0%		0%		4%	

Longitudinal Profile Plots

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Little Pine Reach 1 (STA 100+00 - 114+44)

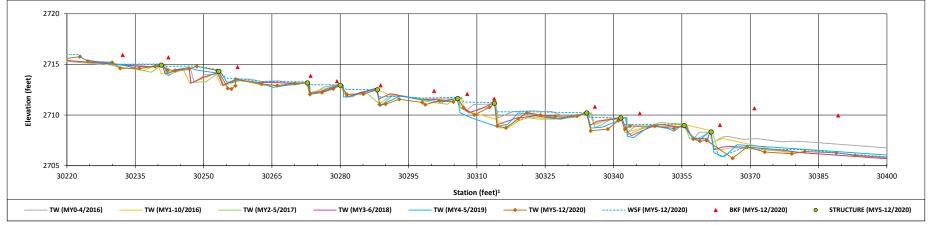

¹ Profile stationing derived from as-built thalweg alignment.


 2 Stream repairs completed in fall 2020 on Little Pine Creek Reach 1 (STA 100+43 to 101+75) and Reach 2a (STA 121+25 to 122+50).

Longitudinal Profile Plots

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

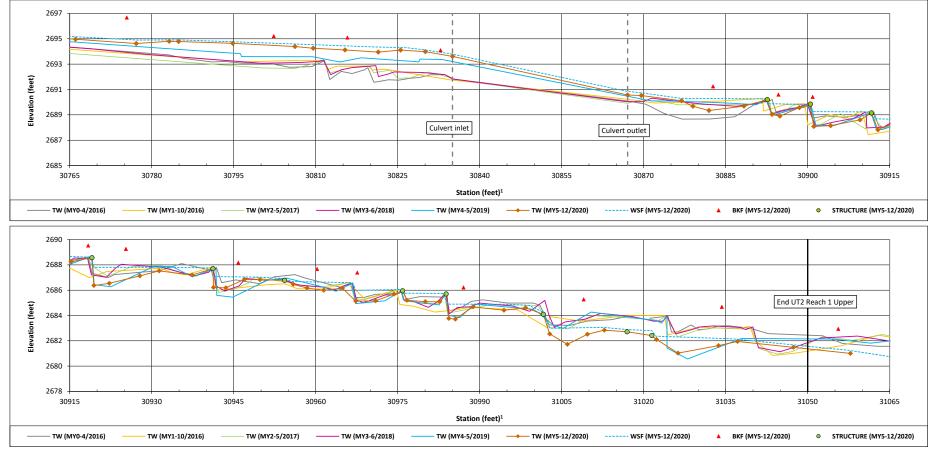
Little Pine Reach 2a (114+44-125+27) and Reach 2b (125+27-130+20)


¹ Profile stationing derived from as-built thalweg alignment.

² Stream repairs completed in fall 2020 on Little Pine Creek Reach 1 (STA 100+43 to 101+75) and Reach 2a (STA 121+25 to 122+50).

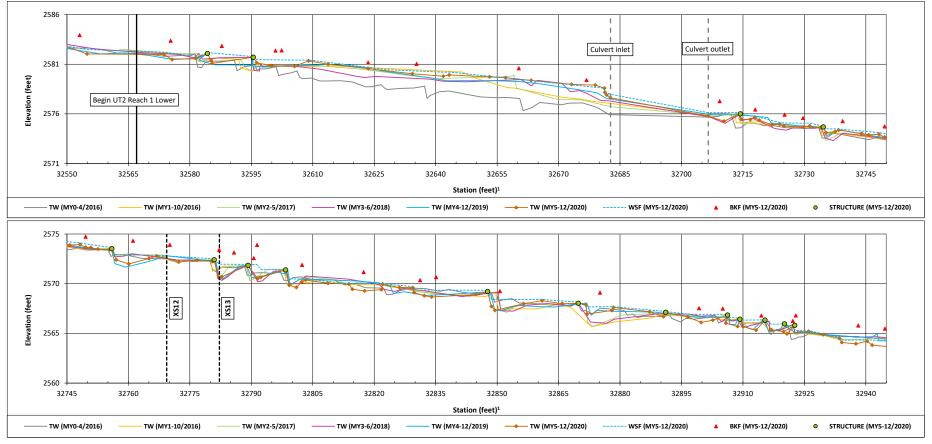
Longitudinal Profile Plots

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020


UT2 Reach 1 Upper (STA 297+18 - 325+67)

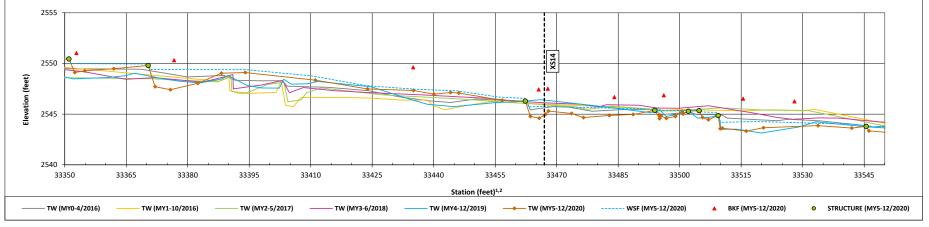
¹ Profile stationing derived from as-built thalweg alignment.

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020


UT2 Reach 1 Upper (STA 297+18 - 325+67)

¹ Profile stationing derived from as-built thalweg alignment.

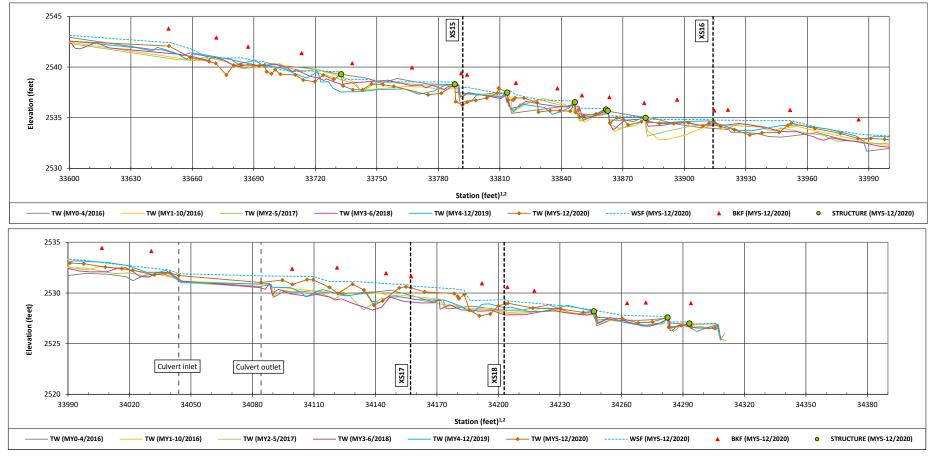
Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020


UT2 Reach 1 Lower (STA 325+67 - 330+00)

¹ Profile stationing derived from as-built thalweg alignment.

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

UT2 Reach 2 (STA 330+00 - 343+18)

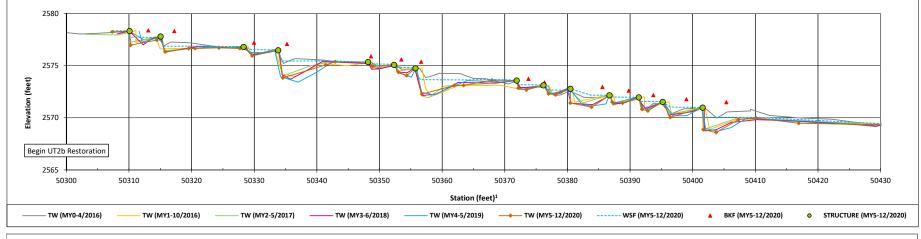


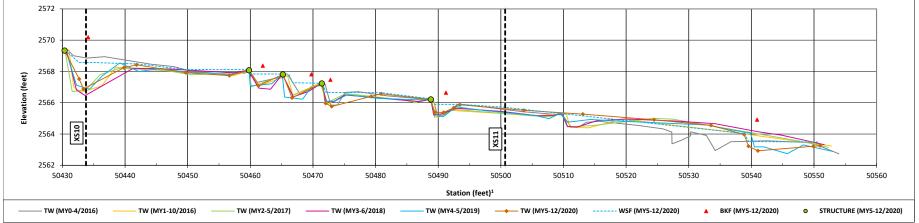
¹ Profile stationing derived from as-built thalweg alignment.

² Stream repairs completed in September 2019 on UT2 Reach 2 STA 332+25 to 339+15.

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

UT2 Reach 2 (STA 330+00 - 343+18)

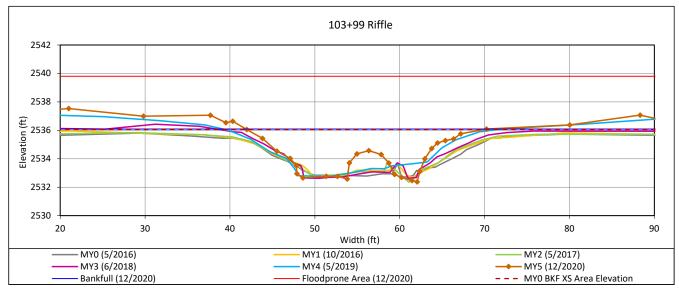



¹ Profile stationing derived from as-built thalweg alignment.

² Stream repairs completed in September 2019 on UT2 Reach 2 STA 332+25 to 339+15.

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

UT2b (STA 503+00 - 505+53)

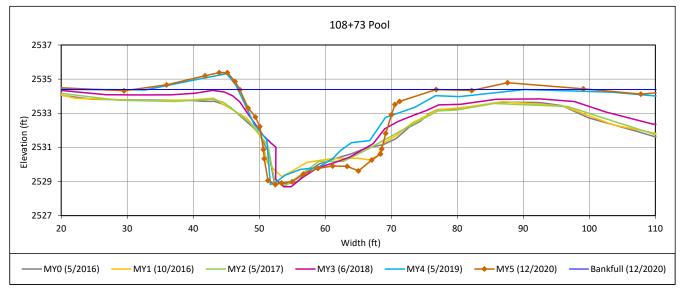


¹ Profile stationing derived from as-built thalweg alignment.

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Cross-Section 1- Little Pine Reach 1

Bankfull Dimensions


- 54.2 x-section area (ft.sq.)
- 25.3 width (ft)
- 2.1 mean depth (ft)
- 3.7 max depth (ft)
- 29.6 wetted perimeter (ft)
- 1.8 hydraulic radius (ft)
- 11.8 width-depth ratio
- 11.8 Width-deptillatio
- 106.0 W flood prone area (ft)
- 4.2 entrenchment ratio
- 1.0 low bank height ratio

View Downstream

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Cross-Section 2- Little Pine Reach 1

Bankfull Dimensions

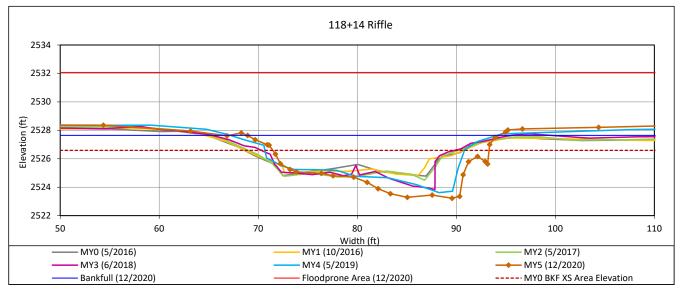

- 97.0 x-section area (ft.sq.)
- 29.8 width (ft)
- 3.3 mean depth (ft)
- 5.6 max depth (ft)
- 34.5 wetted perimeter (ft)
- 2.8 hydraulic radius (ft)
- 9.1 width-depth ratio

Survey Date: 12/2020 Field Crew: Wildlands Engineering

View Downstream

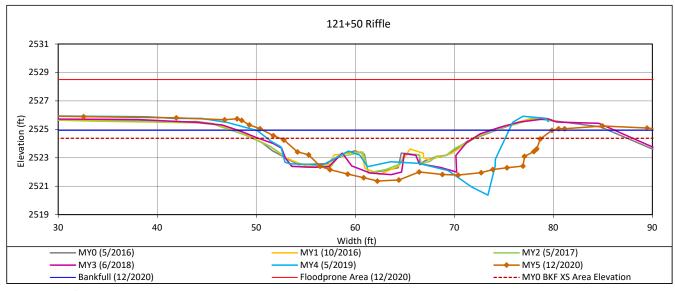
Cross-Section 3- Little Pine Reach 1

Bankfull Dimensions


- 61.8 x-section area (ft.sq.)
- 25.5 width (ft)
- 2.4 mean depth (ft)
- 4.4 max depth (ft)
- 29.6 wetted perimeter (ft)
- 2.1 hydraulic radius (ft)
- 10.5 width-depth ratio
- 214.0 W flood prone area (ft)
- 8.4 entrenchment ratio
- 1.1 low bank height ratio

View Downstream

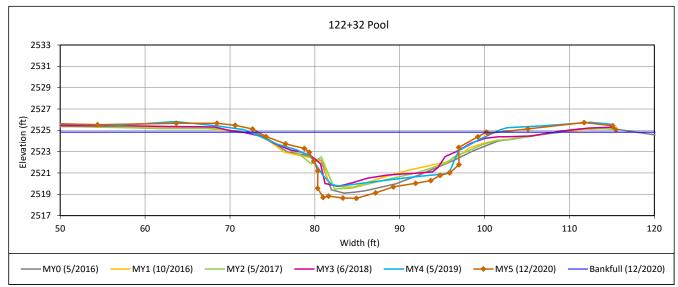
Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020


Bankfull Dimensions

- 71.1 x-section area (ft.sq.)
- 25.4 width (ft)
- 2.8 mean depth (ft)
- 4.4 max depth (ft)
- 29.8 wetted perimeter (ft)
- 2.4 hydraulic radius (ft)
- 9.1 width-depth ratio
- 189.0 W flood prone area (ft)
- 7.4 entrenchment ratio
- 1.3 low bank height ratio

View Downstream

Cross-Section 5- Little Pine Reach 2a


Bankfull Dimensions

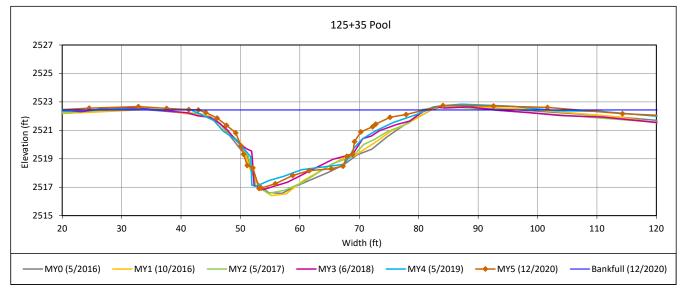
- 72.2 x-section area (ft.sq.)
- 29.2 width (ft)
- 2.5 mean depth (ft)
- 3.6 max depth (ft)
- 31.2 wetted perimeter (ft)
- 2.3 hydraulic radius (ft)
- 11.8 width-depth ratio
- 93.0 W flood prone area (ft)
- 3.2 entrenchment ratio
- 5.2 entrenentituto
- 1.2 low bank height ratio

View Downstream

Cross-Section 6- Little Pine Reach 2a

Bankfull Dimensions

- 97.4 x-section area (ft.sq.)
- 26.9 width (ft)
- 3.6 mean depth (ft)
- 6.2 max depth (ft)
- 32.8 wetted perimeter (ft)
- 3.0 hydraulic radius (ft)
- 7.4 width-depth ratio

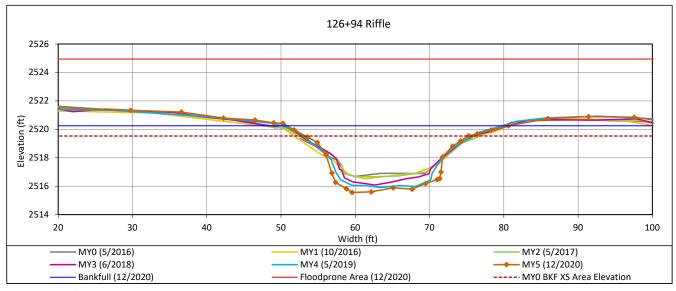

Survey Date: 12/2020 Field Crew: Wildlands Engineering

View Downstream

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Bankfull Dimensions

- 98.1 x-section area (ft.sq.)
- 38.1 width (ft)
- 2.6 mean depth (ft)
- 5.5 max depth (ft)
- 41.5 wetted perimeter (ft)
- 2.4 hydraulic radius (ft)
- 14.8 width-depth ratio

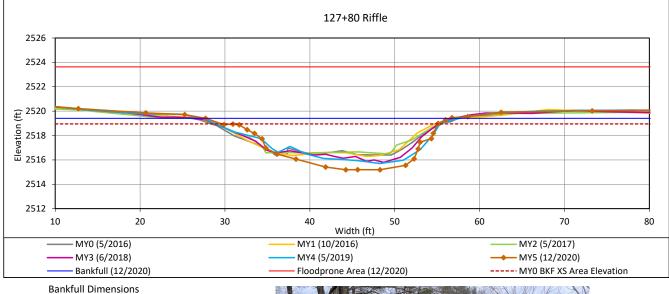

Survey Date: 12/2020 Field Crew: Wildlands Engineering

View Downstream

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Cross-Section 8 - Little Pine Reach 2b

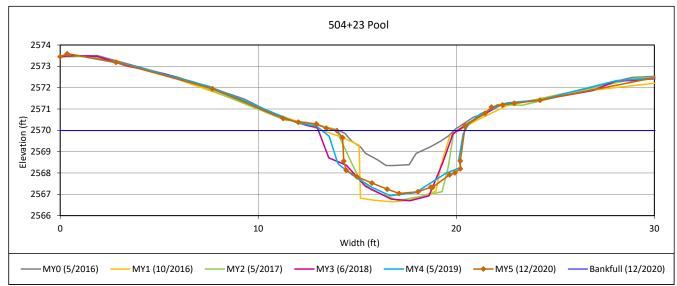
Bankfull Dimensions


- 77.4 x-section area (ft.sq.)
- 29.8 width (ft)
- 2.6 mean depth (ft)
- 4.7 max depth (ft)
- 33.1 wetted perimeter (ft)
- 2.3 hydraulic radius (ft)
- 11.5 width-depth ratio
- ----
- 121.0 W flood prone area (ft)
- 4.1 entrenchment ratio
- 1.2 low bank height ratio

View Downstream

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

- 76.6 x-section area (ft.sq.)
- 28.8 width (ft)
- 2.7 mean depth (ft)
- 4.2 max depth (ft)
- 31.5 wetted perimeter (ft)
- 2.4 hydraulic radius (ft)
- 10.9 width-depth ratio
- 110.0 W flood prone area (ft)
- 3.8 entrenchment ratio
- 1.1 low bank height ratio

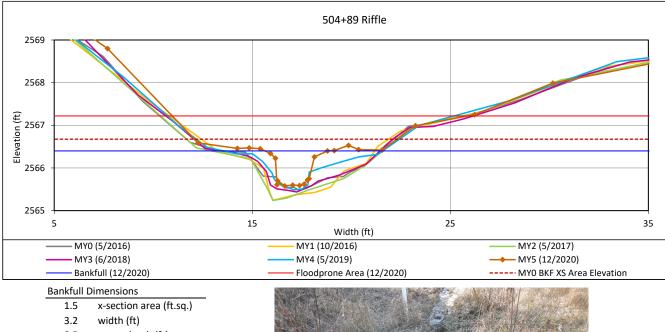


View Downstream

Cross-Section Plots Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903

Monitoring Year 5 - 2020

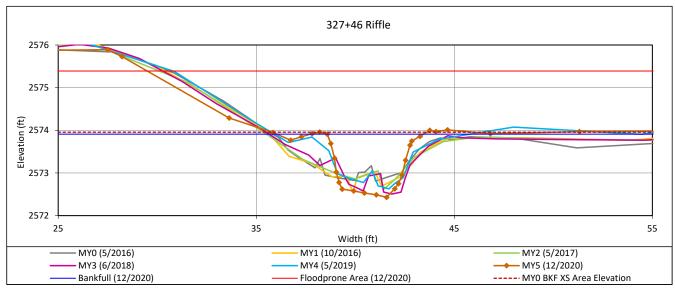
Cross-Section 10 - UT2b


Bankfull Dimensions

- 14.9 x-section area (ft.sq.)
- 6.4 width (ft)
- 2.3 mean depth (ft)
- max depth (ft) 2.9
- 10.1 wetted perimeter (ft) 1.5
- hydraulic radius (ft)
- 2.8 width-depth ratio

View Downstream

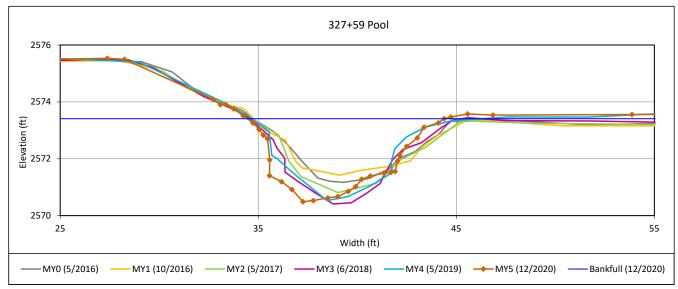
Cross-Section 11 - UT2b



- 0.5 mean depth (ft)
- 0.8 max depth (ft)
- 4.2 wetted perimeter (ft)
- 0.4 hydraulic radius (ft)
- 6.7 width-depth ratio
- 14.9 W flood prone area (ft)
- 4.7 entrenchment ratio
- 0.7 low bank height ratio

View Downstream

Cross-Section 12 - UT2

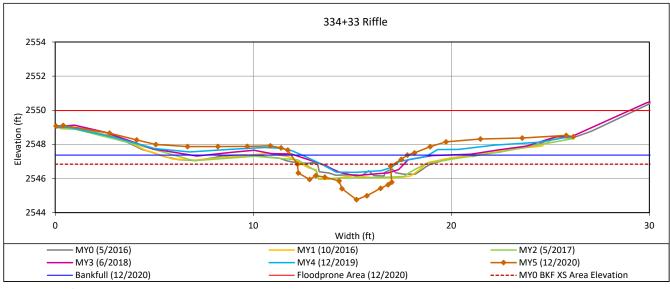

Bankfull Dimensions

- 4.9 x-section area (ft.sq.)
- 4.9 width (ft)
- 1.0 mean depth (ft)
- 1.5 max depth (ft)
- 6.3 wetted perimeter (ft)
- 0.8 hydraulic radius (ft)
- 4.8 width-depth ratio
- 32.7 W flood prone area (ft)
- 6.7 entrenchment ratio
- 1.0 low bank height ratio

View Downstream

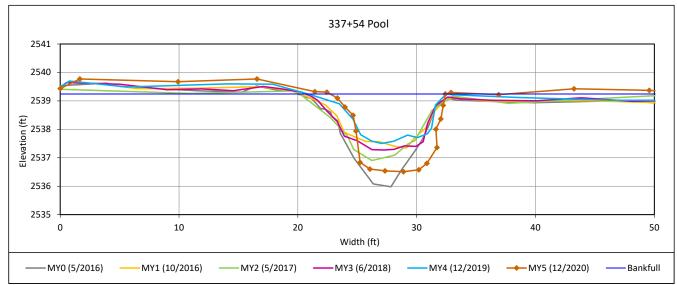
Cross-Section 13 - UT2

Bankfull Dimensions


- 17.3 x-section area (ft.sq.)
- 9.9 width (ft)
- 1.7 mean depth (ft)
- max depth (ft) 2.9
- 12.6 wetted perimeter (ft) hydraulic radius (ft)
- 1.4
- 5.7 width-depth ratio

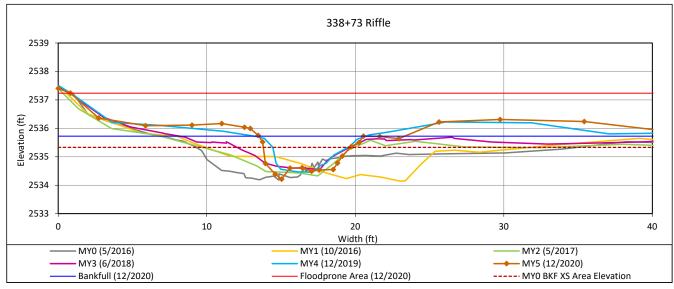
Survey Date: 12/2020 Field Crew: Wildlands Engineering

View Downstream


Bankfull Dimensions

- 8.8 x-section area (ft.sq.)
- 5.9 width (ft)
- 1.5 mean depth (ft)
- 2.6 max depth (ft)
- 9.0 wetted perimeter (ft)
- 1.0 hydraulic radius (ft)
- 3.9 width-depth ratio
- 26.0 W flood prone area (ft)
- 4.4 entrenchment ratio
- 1.3 low bank height ratio

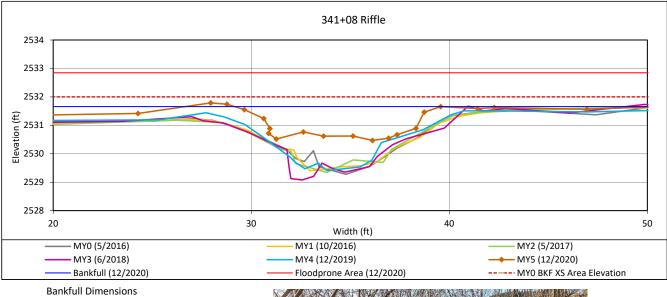
View Downstream


Bankfull Dimensions

- x-section area (ft.sq.) 18.8
- 9.7 width (ft)
- 1.9 mean depth (ft)
- max depth (ft) 2.7
- 12.7 wetted perimeter (ft) hydraulic radius (ft)
- 1.5
- 5.0 width-depth ratio

View Downstream

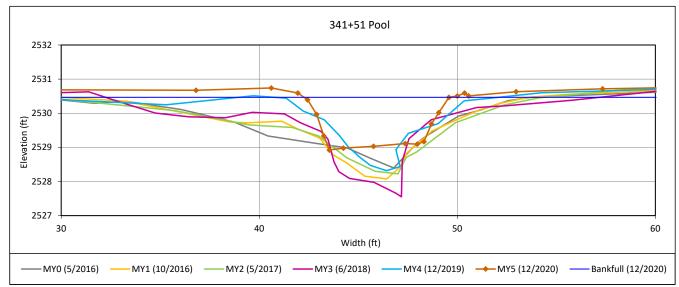
Cross-Section 16 - UT2


Bankfull Dimensions

- 6.7 x-section area (ft.sq.)
- 7.1 width (ft)
- 1.0 mean depth (ft)
- 1.5 max depth (ft)
- 8.3 wetted perimeter (ft)
- 0.8 hydraulic radius (ft)
- 7.4 width-depth ratio
- 42.0 W flood prone area (ft)
- 6.0 entrenchment ratio
- 1.4 low bank height ratio

View Downstream

Cross-Section 17 - UT2



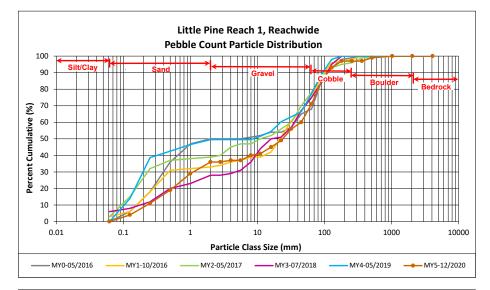
- 8.3
- x-section area (ft.sq.)
- 10.4 width (ft)
- 0.8 mean depth (ft)
- 1.2 max depth (ft)
- 11.3 wetted perimeter (ft)
- 0.7 hydraulic radius (ft)
- 13.0 width-depth ratio
- 71.0 W flood prone area (ft)
- entrenchment ratio 6.8
- 0.8 low bank height ratio

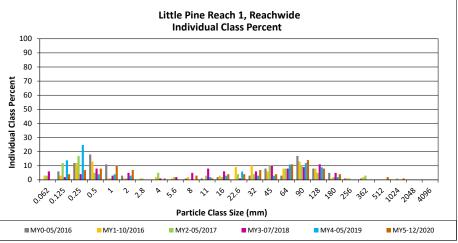
View Downstream

Cross-Section 18 - UT2

Bankfull Dimensions

- 8.4 x-section area (ft.sq.)
- 7.3 width (ft)
- 1.1 mean depth (ft)
- max depth (ft) 1.5
- 8.7 wetted perimeter (ft)
- 1.0 hydraulic radius (ft)
- 6.4 width-depth ratio

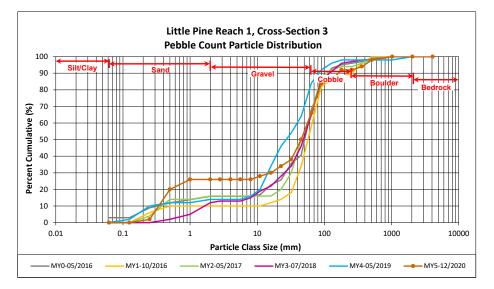

View Downstream

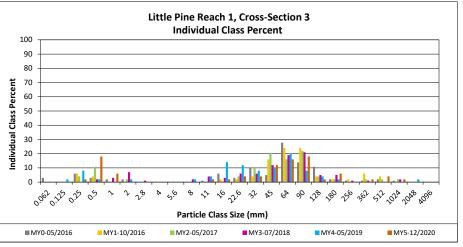

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Little Pine Reach 1, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary	
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062					0
	Very fine	0.062	0.125		4	4	4	4
	Fine	0.125	0.250		7	7	7	11
SAND	Medium	0.25	0.50	1	7	8	8	19
5	Coarse	0.5	1.0		10	10	10	29
	Very Coarse	1.0	2.0	1	6	7	7	36
	Very Fine	2.0	2.8					36
	Very Fine	2.8	4.0		1	1	1	37
	Fine	4.0	5.6					37
	Fine	5.6	8.0		3	3	3	40
. (c)	Medium	8.0	11.0		1	1	1	41
GRAVET	Medium	11.0	16.0	2	2	4	4	45
-	Coarse	16.0	22.6	2	2	4	4	49
	Coarse	22.6	32	3	4	7	7	56
	Very Coarse	32	45	3	1	4	4	60
	Very Coarse	45	64	10	1	11	11	71
	Small	64	90	14		14	14	85
alt	Small	90	128	7	1	8	8	93
COBBLE	Large	128	180	4		4	4	97
-	Large	180	256					97
	Small	256	362					97
and the second s	Small	362	512	2		2	2	99
ð	Medium	512	1024	1		1	1	100
v	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	0.4			
D ₃₅ =	1.8			
D ₅₀ =	23.8			
D ₈₄ =	87.8			
D ₉₅ =	151.8			
D ₁₀₀ =	1024.0			

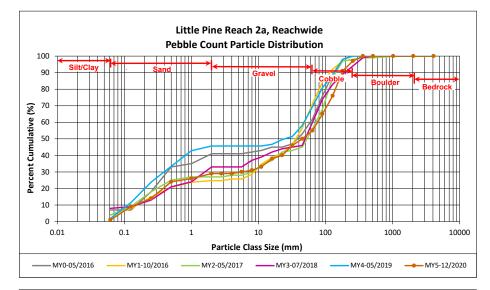


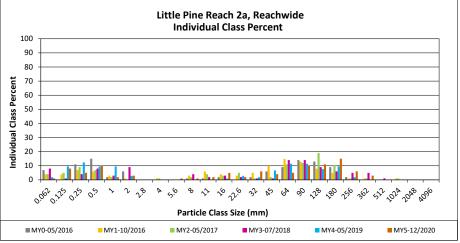

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Little Pine Reach 1, Cross-Section 3

		Diame	ter (mm)		Summary		
Pai	rticle Class			Riffle 100-Count	Class	Percent	
		min	max		Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125			0	
	Fine	0.125	0.250	1	2	2	
SAND	Medium	0.25	0.50	9	18	20	
7	Coarse	0.5	1.0	3	6	26	
	Very Coarse	1.0	2.0			26	
	Very Fine	2.0	2.8			26	
	Very Fine	2.8	4.0			26	
	Fine	4.0	5.6			26	
	Fine	5.6	8.0			26	
.164	Medium	8.0	11.0	1	2	28	
GRAVEL	Medium	11.0	16.0	1	2	30	
-	Coarse	16.0	22.6	2	4	34	
	Coarse	22.6	32	2	4	38	
	Very Coarse	32	45	6	12	50	
	Very Coarse	45	64	8	16	66	
	Small	64	90	9	18	84	
N.	Small	90	128	1	2	86	
COBBLE	Large	128	180	3	6	92	
	Large	180	256			92	
	Small	256	362	1	2	94	
	Small	362	512	2	4	98	
۵ ^۳	Medium	512	1024	1	2	100	
v	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	50	100	100	

Cross-Section 3					
Channel materials (mm)					
0.4					
24.7					
45.0					
90.0					
394.8					
1024.0					

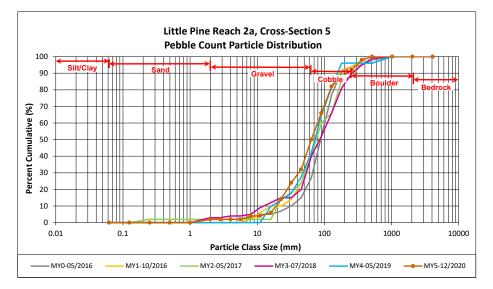


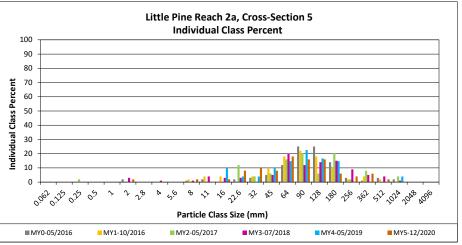

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Little Pine Reach 2a, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary	
Particle Class							Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062		1	1	1	1
	Very fine	0.062	0.125		8	8	8	9
	Fine	0.125	0.250		5	5	5	14
SAND	Medium	0.25	0.50		10	10	10	24
יל	Coarse	0.5	1.0		2	2	2	26
	Very Coarse	1.0	2.0	1	2	3	3	29
	Very Fine	2.0	2.8					29
	Very Fine	2.8	4.0					29
	Fine	4.0	5.6		1	1	1	30
	Fine	5.6	8.0		1	1	1	31
. (¢>	Medium	8.0	11.0		2	2	2	33
GRAVEL	Medium	11.0	16.0	1	4	5	5	38
	Coarse	16.0	22.6		2	2	2	40
	Coarse	22.6	32	2	4	6	6	46
	Very Coarse	32	45	3	1	4	4	50
	Very Coarse	45	64	5		5	5	55
	Small	64	90	9	1	10	10	65
NE	Small	90	128	7	4	11	11	76
COBBLE	Large	128	180	13	2	15	15	91
-	Large	180	256	6		6	6	97
	Small	256	362	3		3	3	100
Š	Small	362	512					100
ð	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	0.3			
D ₃₅ =	12.8			
D ₅₀ =	45.0			
D ₈₄ =	153.5			
D ₉₅ =	227.6			
D ₁₀₀ =	362.0			

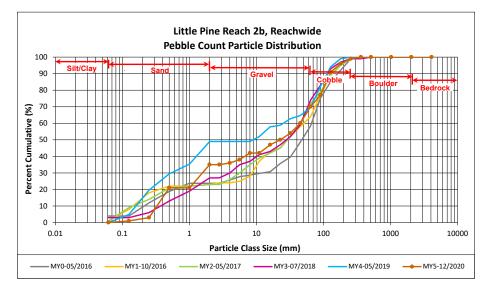


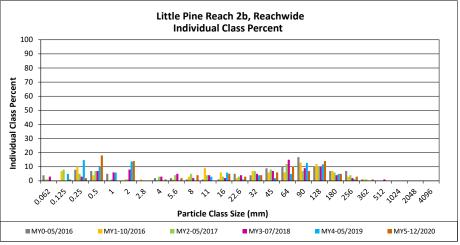

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Little Pine Reach 2a, Cross-Section 5

		Diame	ter (mm)		Summary		
Par	rticle Class			Riffle 100-Count	Class	Percent	
		min	max		Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125			0	
-	Fine	0.125	0.250			0	
SAND	Medium	0.25	0.50			0	
7	Coarse	0.5	1.0			0	
	Very Coarse	1.0	2.0	1	2	2	
	Very Fine	2.0	2.8			2	
	Very Fine	2.8	4.0			2	
	Fine	4.0	5.6			2	
	Fine	5.6	8.0	1	2	4	
	Medium	8.0	11.0			4	
GRAVEL	Medium	11.0	16.0	1	2	6	
	Coarse	16.0	22.6	4	8	14	
	Coarse	22.6	32	5	10	24	
	Very Coarse	32	45	4	8	32	
	Very Coarse	45	64	9	18	50	
	Small	64	90	8	16	66	
alt	Small	90	128	8	16	82	
COBBLE	Large	128	180	3	6	88	
-	Large	180	256	2	4	92	
_	Small	256	362	3	6	98	
and the second s	Small	362	512	1	2	100	
Ø	Medium	512	1024			100	
×	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	50	100	100	

Cross-Section 5					
Channel materials (mm)					
D ₁₆ =	24.2				
D ₃₅ =	47.7				
D ₅₀ =	64.0				
D ₈₄ =	143.4				
D ₉₅ =	304.4				
D ₁₀₀ =	512.0				

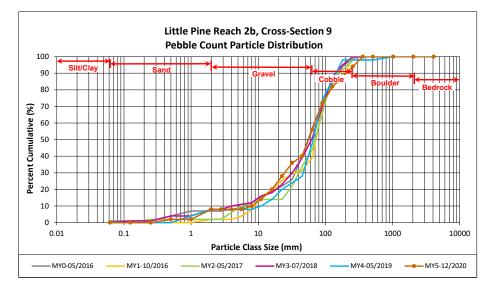


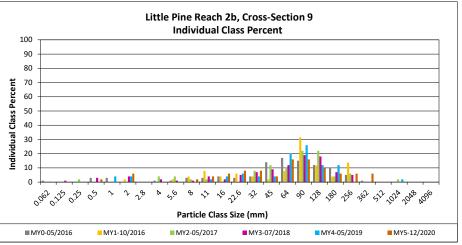

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Little Pine Reach 2b, Reachwide

		Diame	ter (mm)	Ра	rticle Co	unt	Reach Summary	
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062					0
	Very fine	0.062	0.125		1	1	1	1
	Fine	0.125	0.250		2	2	2	3
SAND	Medium	0.25	0.50	2	16	18	18	21
51	Coarse	0.5	1.0					21
	Very Coarse	1.0	2.0	3	11	14	14	35
	Very Fine	2.0	2.8					35
	Very Fine	2.8	4.0		1	1	1	36
	Fine	4.0	5.6		2	2	2	38
	Fine	5.6	8.0	1	3	4	4	42
.(¢>	Medium	8.0	11.0					42
GRAVEL	Medium	11.0	16.0	1	4	5	5	47
-	Coarse	16.0	22.6		3	3	3	50
	Coarse	22.6	32	2	2	4	4	54
	Very Coarse	32	45	4	2	6	6	60
	Very Coarse	45	64	6	4	10	10	70
	Small	64	90	3	4	7	7	77
alt	Small	90	128	11	3	14	14	91
COBBLE	Large	128	180	3	2	5	5	96
-	Large	180	256	3		3	3	99
	Small	256	362	1		1	1	100
and the second s	Small	362	512					100
ø	Medium	512	1024					100
P	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	40	60	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	0.4			
D ₃₅ =	2.0			
D ₅₀ =	22.6			
D ₈₄ =	107.3			
D ₉₅ =	168.1			
D ₁₀₀ =	362.0			

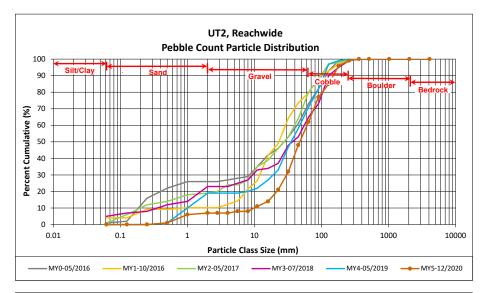


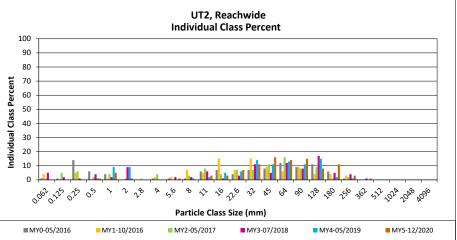

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Little Pine Reach 2b, Cross-Section 9

		Diame	ter (mm)		Summary		
Par	ticle Class			Riffle 100-Count	Class	Percent	
		min	max		Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125			0	
-	Fine	0.125	0.250			0	
SAND	Medium	0.25	0.50	1	2	2	
7'	Coarse	0.5	1.0			2	
	Very Coarse	1.0	2.0	3	6	8	
	Very Fine	2.0	2.8			8	
	Very Fine	2.8	4.0			8	
	Fine	4.0	5.6			8	
	Fine	5.6	8.0	1	2	10	
affet	Medium	8.0	11.0	2	4	14	
GRAVEL	Medium	11.0	16.0	3	6	20	
-	Coarse	16.0	22.6	4	8	28	
	Coarse	22.6	32	4	8	36	
	Very Coarse	32	45	2	4	40	
	Very Coarse	45	64	8	16	56	
	Small	64	90	8	16	72	
alt	Small	90	128	5	10	82	
COBBLE	Large	128	180	3	6	88	
-	Large	180	256	3	6	94	
_	Small	256	362	3	6	100	
e se	Small	362	512			100	
۵Ÿ	Medium	512	1024			100	
×	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	50	100	100	

Cross-Section 9					
Channel materials (mm)					
D ₁₆ =	12.5				
D ₃₅ =	30.6				
D ₅₀ =	56.1				
D ₈₄ =	143.4				
D ₉₅ =	271.2				
D ₁₀₀ =	362.0				

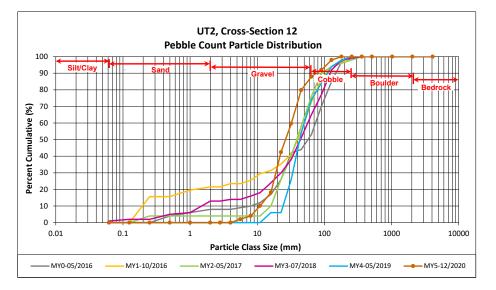

Reachwide and Cross-Section Pebble Count Plots Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903

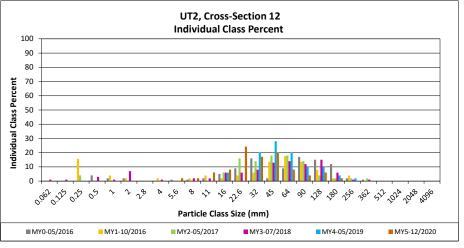

Monitoring Year 5 - 2020

UT2, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary	
Particle Class							Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062					0
	Very fine	0.062	0.125					0
	Fine	0.125	0.250					0
SAND	Medium	0.25	0.50		1	1	1	1
57	Coarse	0.5	1.0		5	5	5	6
	Very Coarse	1.0	2.0		1	1	1	7
	Very Fine	2.0	2.8					7
	Very Fine	2.8	4.0					7
	Fine	4.0	5.6	1		1	1	8
	Fine	5.6	8.0					8
.(¢>	Medium	8.0	11.0	1	2	3	3	11
GRAVEL	Medium	11.0	16.0	1	2	3	3	14
-	Coarse	16.0	22.6	2	5	7	7	21
	Coarse	22.6	32	7	4	11	11	32
	Very Coarse	32	45	10	6	16	16	48
	Very Coarse	45	64	13	1	14	14	62
	Small	64	90	13	2	15	15	77
alt	Small	90	128	8		8	8	85
COBBLE	Large	128	180	10	1	11	11	96
-	Large	180	256	3		3	3	99
	Small	256	362	1		1	1	100
, se	Small	362	512					100
and the second s	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
	•		Total	70	30	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	17.7			
D ₃₅ =	34.1			
D ₅₀ =	47.3			
D ₈₄ =	122.5			
D ₉₅ =	174.5			
D ₁₀₀ =	362.0			
- 100				

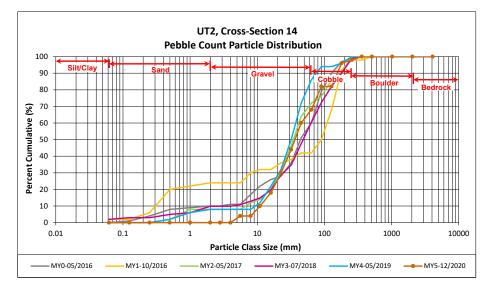


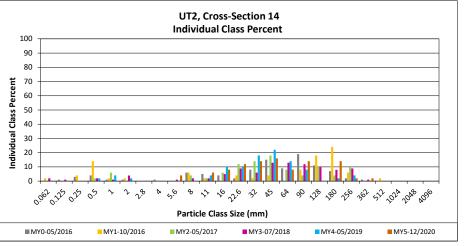

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

UT2, Cross-Section 12

		Diame	ter (mm)		Sum	mary
Particle Class				Riffle 100-Count	Class	Percent
		min	max		Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250			0
SAND	Medium	0.25	0.50			0
יל	Coarse	0.5	1.0			0
	Very Coarse	1.0	2.0			0
	Very Fine	2.0	2.8			0
	Very Fine	2.8	4.0			0
	Fine	4.0	5.6	2	2	2
	Fine	5.6	8.0	2	2	4
stet	Medium	8.0	11.0	6	6	10
GRAVEL	Medium	11.0	16.0	8	8	18
	Coarse	16.0	22.6	24	24	42
	Coarse	22.6	32	17	17	60
	Very Coarse	32	45	20	20	80
	Very Coarse	45	64	8	8	88
	Small	64	90	4	4	92
alt	Small	90	128	6	6	98
COBBLE	Large	128	180	2	2	100
	Large	180	256			100
	Small	256	362			100
	Small	362	512			100
ళ	Medium	512	1024			100
¥	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	99	100	100

	Cross-Section 12				
Channel materials (mm)					
D ₁₆ =	14.5				
D ₃₅ =	20.3				
D ₅₀ =	26.3				
D ₈₄ =	54.0				
D ₉₅ =	107.6				
D ₁₀₀ =	180.0				

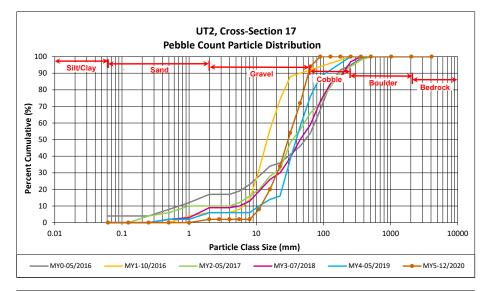


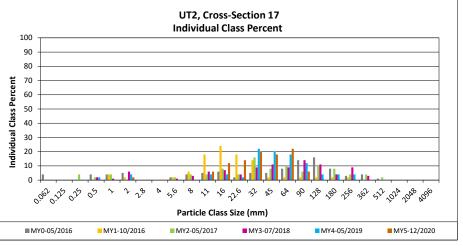

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

UT2, Cross-Section 14

		Diame	ter (mm)		Summary		
Particle Class				Riffle 100-Count	Class	Percent	
		min	max		Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125			0	
-	Fine	0.125	0.250			0	
SAND	Medium	0.25	0.50			0	
יכ	Coarse	0.5	1.0			0	
	Very Coarse	1.0	2.0			0	
	Very Fine	2.0	2.8			0	
	Very Fine	2.8	4.0			0	
	Fine	4.0	5.6	2	4	4	
	Fine	5.6	8.0			4	
Jet	Medium	8.0	11.0	3	6	10	
GRAVEL	Medium	11.0	16.0	4	8	18	
	Coarse	16.0	22.6	6	12	30	
	Coarse	22.6	32	7	14	44	
	Very Coarse	32	45	8	16	60	
	Very Coarse	45	64	4	8	68	
	Small	64	90	7	14	82	
alt	Small	90	128			82	
OBBLE	Large	128	180	7	14	96	
-	Large	180	256	1	2	98	
_	Small	256	362	1	2	100	
	Small	362	512			100	
ø	Medium	512	1024			100	
¥	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	50	100	100	

1	Cross-Section 14					
	Channel materials (mm)					
	D ₁₆ =	14.6				
	D ₃₅ =	25.6				
	D ₅₀ =	36.4				
	D ₈₄ =	134.4				
	D ₉₅ =	175.7				
	D ₁₀₀ =	362.0				

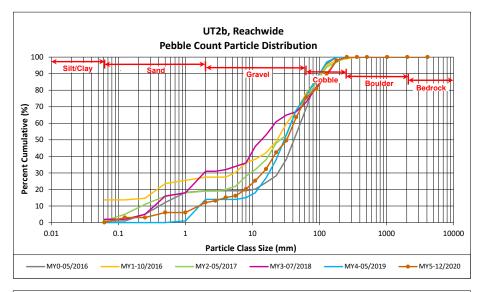


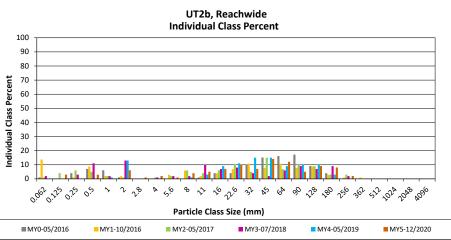

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

UT2, Cross-Section 17

		Diame	ter (mm)		Summary		
Particle Class				Riffle 100-Count	Class	Percent	
		min	max		Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125			0	
_	Fine	0.125	0.250			0	
SAND	Medium	0.25	0.50			0	
7	Coarse	0.5	1.0			0	
	Very Coarse	1.0	2.0	1	2	2	
	Very Fine	2.0	2.8			2	
	Very Fine	2.8	4.0			2	
	Fine	4.0	5.6			2	
	Fine	5.6	8.0			2	
JEt	Medium	8.0	11.0	3	6	8	
GRAVEL	Medium	11.0	16.0	6	12	20	
	Coarse	16.0	22.6	7	14	34	
	Coarse	22.6	32	10	20	54	
	Very Coarse	32	45	9	18	72	
	Very Coarse	45	64	11	22	94	
	Small	64	90	3	6	100	
alt	Small	90	128			100	
COBBLE	Large	128	180			100	
	Large	180	256			100	
	Small	256	362			100	
and the second s	Small	362	512			100	
ø	Medium	512	1024			100	
v	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	50	100	100	

Γ	Cross-Section 17				
	Channel materials (mm)				
	D ₁₆ =	14.1			
	D ₃₅ =	23.0			
	D ₅₀ =	29.8			
	D ₈₄ =	54.5			
	D ₉₅ =	67.7			
	D ₁₀₀ =	90.0			

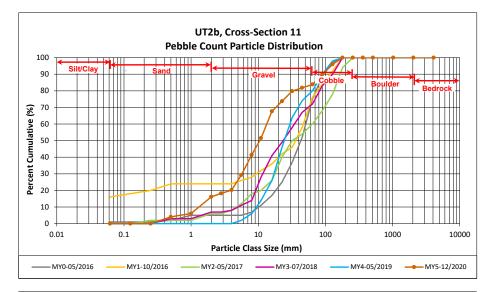

Reachwide and Cross-Section Pebble Count Plots Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903

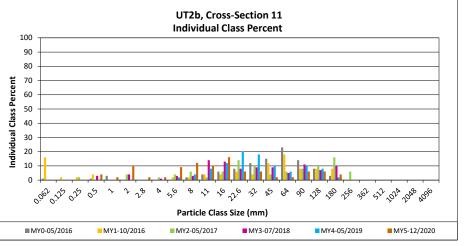

Monitoring Year 5 - 2020

UT2b, Reachwide

		Diame	ter (mm)	Ра	rticle Co	unt	Reach Summary	
Particle Class							Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062					0
	Very fine	0.062	0.125		3	3	3	3
	Fine	0.125	0.250					3
SAND	Medium	0.25	0.50		3	3	3	6
51	Coarse	0.5	1.0					6
	Very Coarse	1.0	2.0	3	3	6	6	12
	Very Fine	2.0	2.8		1	1	1	13
	Very Fine	2.8	4.0		2	2	2	15
	Fine	4.0	5.6	1		1	1	16
	Fine	5.6	8.0		4	4	4	20
. (c)	Medium	8.0	11.0	2	3	5	5	25
GRAVEL	Medium	11.0	16.0	5	2	7	7	32
-	Coarse	16.0	22.6	9	1	10	10	42
	Coarse	22.6	32	5	2	7	7	49
	Very Coarse	32	45	12	2	14	14	64
	Very Coarse	45	64	11	1	12	12	76
	Small	64	90	5		5	5	81
alt	Small	90	128	8	1	9	9	90
COBBLE	Large	128	180	6	2	8	8	98
-	Large	180	256	2		2	2	100
A NO ^R	Small	256	362					100
	Small	362	512					100
ð	Medium	512	1024					100
V	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	69	30	99	100	100

Reachwide				
Channel materials (mm)				
5.3				
17.5				
32.4				
101.8				
158.7				
256.0				




Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

UT2b, Cross-Section 11

		Diame	ter (mm)		Summary		
Particle Class				Riffle 100-Count	Class	Percent	
		min	max		Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125			0	
-	Fine	0.125	0.250			0	
SAND	Medium	0.25	0.50	4	4	4	
יל	Coarse	0.5	1.0	2	2	6	
	Very Coarse	1.0	2.0	10	10	16	
	Very Fine	2.0	2.8	2	2	18	
	Very Fine	2.8	4.0	2	2	20	
	Fine	4.0	5.6	9	9	29	
	Fine	5.6	8.0	12	12	41	
JEt	Medium	8.0	11.0	10	10	52	
GRAVEL	Medium	11.0	16.0	16	16	68	
	Coarse	16.0	22.6	6	6	74	
	Coarse	22.6	32	6	6	80	
	Very Coarse	32	45	2	2	82	
	Very Coarse	45	64	2	2	84	
	Small	64	90	6	6	90	
alt	Small	90	128	6	6	96	
COBBLE	Large	128	180	4	4	100	
	Large	180	256			100	
	Small	256	362			100	
	Small	362	512			100	
్రా	Medium	512	1024			100	
	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	99	100	100	

1	Cross-Section 11					
	Channel materials (mm)					
	D ₁₆ =	2.0				
	D ₃₅ =	6.6				
	D ₅₀ =	10.5				
	D ₈₄ =	64.6				
	D ₉₅ =	121.1				
	D ₁₀₀ =	180.0				

APPENDIX 5. Hydrology Summary Data and Plots

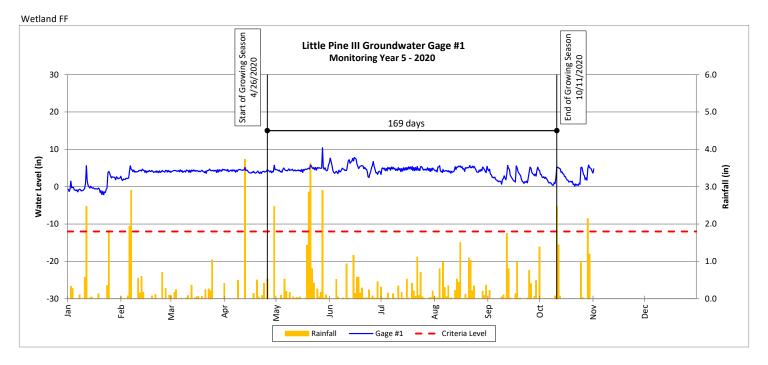
Table 14. Verification of Bankfull Events

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

Reach	Year of Occurrence	Date of Data Collection	Date of Occurrence	Method
	MY1	9/25/2016	unknown	Crest Gage
	MY2	5/23/2017	unknown	Wrack Lines and alluvial sediment deposit
Little Pine	MY3	4/2/2018	unknown	Wrack Lines and alluvial sediment deposit
	MY4	9/18/2019	unknown	Crest Gage
	MY5	8/20/2020	unknown	Wrack Lines and alluvial sediment deposit
	MY1	10/5/2016	unknown	Crest Gage
	MY2	5/23/2017	unknown	Crest Gage
UT2	MY3	4/2/2018	unknown	Wrack Lines and alluvial sediment deposit
	MY4	12/3/2019	unknown	Wrack Lines and alluvial sediment deposit
	MY5	8/20/2020	unknown	Wrack Lines and alluvial sediment deposit
	MY1	9/27/2016	unknown	Crest Gage
UT2B	MY3	4/2/2018	unknown	Wrack Lines and alluvial sediment deposit
0126	MY4	9/18/2019	unknown	Crest Gage
	MY5	8/20/2020	unknown	Crest Gage

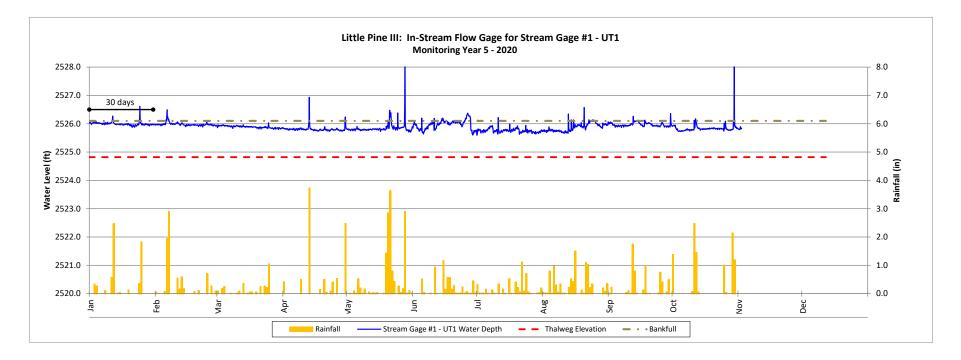
Table 15. Wetland Gage Attainment Summary

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

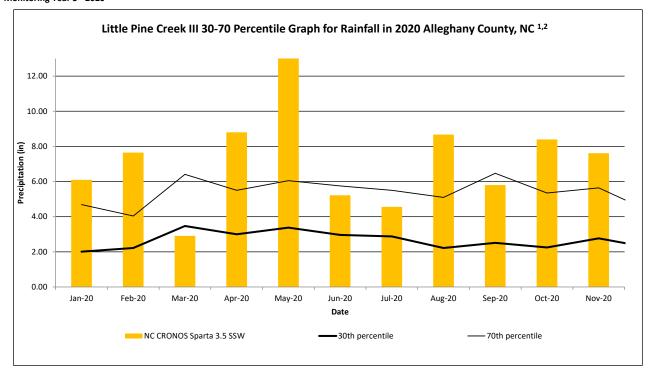

Summary of Groundwater Gage Results for MY5										
Gage	Success Criteria Achieved/Max Consecutive Days During Growing Season ¹ (%)									
Gage	Year 1 (2016)	Year 2 (2017)	Year 3 (2018)	Year 4 (2019)	Year 5 (2020)					
Wetland FF	Yes/112 Days	Yes/169 Days	Yes/169 Days	Yes/169 Days	Yes/169 Days					
Wetland FF	(66.6%)	(100%)	(100%)	(100%)	(100%)					

No wetland success criteria established

¹Growing season starts April 26, 2020 and ends October 11, 2020.


Groundwater Gage Plots

Little Pine III Stream & Wetland Mitigation Project DMS Project No. 94903 Monitoring Year 5 - 2020


Recorded In-stream Flow Events

Little Pine III Stream & Wetland Restoration Project (DMS Project No. 94903) Monitoring Year 5 - 2020

Monthly Rainfall Data

Little Pine III Stream & Wetland Restoration Project DMS Project No. 94903 Monitoring Year 5 - 2020

¹ 2020 rainfall collected from NC CRONOS Station Name: Sparta 3.5 SSW (NCSU, 2020)
 ² 30th and 70th percentile rainfall data collected from weather station Sparta, NC8158 (USDA, 2020)

APPENDIX 6. Repair Plans

ROY COOPER Governor MICHAEL S. REGAN Secretary TIM BAUMGARTNER Director

MEMORANDUM

TO:	Todd Tugwell, USACE
	Kim Browning, USACE
	Casey Haywood, USACE
	Erin Davis, NCDWR
FROM:	Harry Tsomides, NCDEQ - DMS
CC:	Paul Wiesner, NCDEQ - DMS
	Melonie Allen, NCDEQ - DMS
SUBJECT:	Little Pine Creek III – Update on recent stream repairs DMS #94903
	USACE Action ID: SAW-2012-01299
	DWR# 14-0041
	Alleghany County, North Carolina

DATE: December 17, 2020

The purpose of this memo is to provide an update and summary information on recent stream repairs implemented at the Little Pine III project site, to initiate discussion on the remaining monitoring which may be required to evaluate the repair success, and to update the credit release schedule if necessary.

The credit release schedule indicates a 5-year stream/7-year wetland timeline. Project monitoring started in 2016 and is currently in Monitoring Year 5 (2020). The 2020 DMS Credit Ledger is attached to this memo and summarizes project credits and the current trajectory for remaining monitoring and credit releases. The 2020 DMS Credit Ledger request has been on hold until these repairs were completed and a possible IRT field visit made. DMS is planning to hold back the 2020 proposed release, and update the 2020 and 2021 credit releases as appropriate in 2021.

There have been 2 recent repair events. The attached aerial map and design plan views show the repair stations and areas for each repair event. Phase 1 repairs were conducted in Fall 2019 and addressed severe tributary erosion along portions of UT2 and UT2A. Phase II repairs were conducted in Fall 2020 and addressed areas of erosion and structural failures at 2 sections along Little Pine Creek, as well as a series of small head cuts along UT1. Both repair events were designed by Water and Land Solutions (WLS) and built by Backwater Environmental. The bulk of the repairs involved soil lifts with toe wood for bank protection, stone and log steps for grade control, and minor stream realignment. Before and after photos are shown for each phase and area.

North Carolina Department of Environmental Quality | Division of Mitigation Services 217 W. Jones Street | 1652 Mail Service Center | Raleigh, North Carolina 27699-1652 919.707.8976

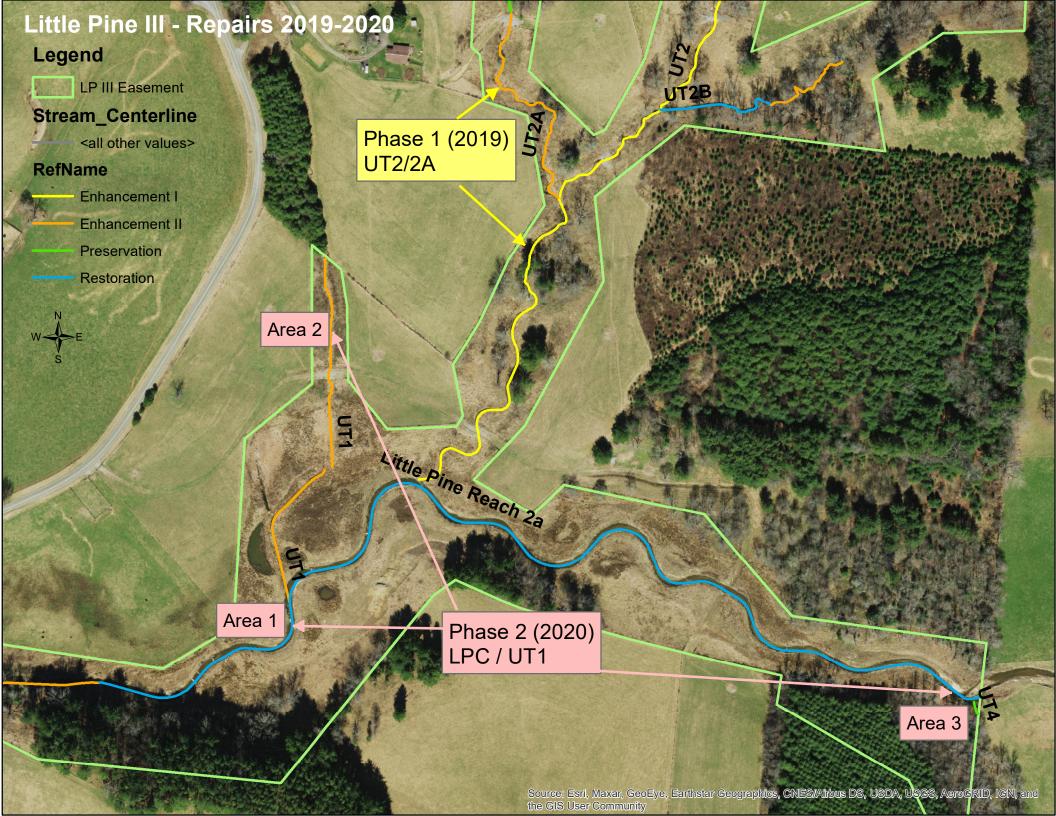
Little Pine Creek is a restoration reach, while UT1, UT2 and UT2A are all enhancement reaches. Following are the project components and mitigation credits:

	e III Stream & V ect No. 94903											
	ng Year 4 - 201	.9										
					Mitigation C	redits						
	Stre	am	Ripa	rian Wetland	Non-Riparian W	Vetland	Buffer	Nitrogen Nutrient Offset		Phosphorous Nutrient Offset		
уре	R	RE	R	RE	R	RE						
otals	6,328.6	644.8	N/A	1.393	N/A	N/A	N/A		N/A	N/A		
						Pro	ject Components					
Re	ach ID	Existing Footage/ Acreage		Approach	Restoration (R) or F Equivalent		As-Built Stationing/ Location	As-Built Footage/ Acreage	Restoration Footage/ Acreage ¹	Mitigation Ratio ²	Credits ¹ (SMU/WMU)	Notes ¹
							STREAMS		1			1
Little P	ine Reach 1			P1/P2	Restoration	(R)	100+00 to 114+44	1,444	1,417	1:1	1,417.0	Excludes one 27 foot wide ford crossing.
Little Pi	ne Reach 2a			P1	Restoration		114+44 to 125+27	1,083	1,058	1:1	1,058.0	Excludes one 25 foot wide ford crossing.
		4,016		P1/P2	Restoration	(R)	125+27 to 130+20	493	493	1:1	493.0	
Little Pi	ne Reach 2b		Plar	nting, fencing	Enhancement	II (R)	130+20 to 135+60	540	509	2.5:1	197.0	Excludes one 31 foot wide ford crossing, Includes 50% reduction f 33 ft overhead electric easement crossing.
	UT1	540	Plar	nting, fencing	Enhancement		197+26 to 202+24	498	463	2.5:1	185.2	Excludes one 35 foot wide culvert crossing.
			Planting, fen	cing, channel creation	Enhancement	II (R)	202+24 to 206+26	402	402	2.5:1	160.8	
	Reach 1 Reach 2	5,270	P1/P2/	P4, preservation	Enhancement	t I (R)	297+18-343+18	4,600	4,474	2:1	2,237.0	Excludes four constructed culvert crossings; 32, 24, 32, and 38 feet wide respectively.
			Plar	nting, fencing	Enhancement II (R) ³		401+78 to 403+34 & 403+75 to 404+34	215 ³	215 ³	n/a	n/a	Easement Break 403+34 - 403+75
	UT2a	2,921	Pr	reservation	Preservation (RE)		405+15 to 426+58	2,143	2,143	5:1	428.6	
			Plar	nting, fencing	Enhancement		426+58 to 432+09	551	519	2.5:1	207.6	Excludes one 32 foot wide constructed culvert crossing.
	UT2b	553	Plar	nting, fencing	Enhancement		500+00 to 503+00	300	300	2.5:1	120.0	
				P2	Restoration	(R)	503+00 to 505+53	253	253	1:1	253.0	5 1 1 ACC 1 1
	UT3 UT4	400		reservation	Preservation		602+44 to 606+44	400 697	384	5:1	76.8	Excludes one 16 foot wide constructed ford crossing.
	014	1,036	Pr	eservation	Preservation		701+26 to 708+23	697	697	5:1	139.4	
Wet	tland AA	0.38	Plar	nting, fencing	Enhancement	(RF)	UT2 floodplain	0.38		2:1	0.190	
	tland BB	0.16		nting, fencing	Enhancement		UT2 floodplain	0.38		2:1	0.080	
Wet	tland CC	0.26	Grade cont	rol, planting, fencing	Enhancement	t (RE)	UT2b headwaters		0.26	2:1	0.130	
Wet	tland DD	0.12	Plar	nting, fencing	Enhancement		North of UT2/UT2a		0.12	2:1	0.060	
We	tland EE	0.28	Pla	nting fencing	Enhancement	t (RE)	UT2 floodplain		0.28	2:1	0.140	
	tland FF	0.76		ation, planting, fencing	Enhancement		North of UT1/Little Pine		0.76	2:1	0.380	
Wet	tland GG	0.33	Plar	nting, fencing	Enhancement	t (RE)	Little Pine		0.33	2:1	0.165	
	tland HH	0.42		g, grade control	Enhancement		South of UT4/ Little Pine		0.42	2:1	0.210	
we	tland JJ	0.19	Pr	eservation	Preservation		UT4 floodplain		0.19	5:1	0.038	
				Component	Summation	·		·				
Restor	ation Level	Strea	m (LF)	Riparian Wetland (acres)	Non-Riparian		er (square feet)	Upland (acres)				
Res	toration	32	21									
Enha	ncement I	44	74									
Enhar	ncement II	21	.93									
Enha	ncement			2.71								
Pres	ervation	32	24	0.19								
estoratio	n footage based o	off of the survey	ed as-built thalw	eg alignment is greater than	design centerline alignme	nt, resulting in	credited length greater than th	at reported in th	e Mitigation Plan.			

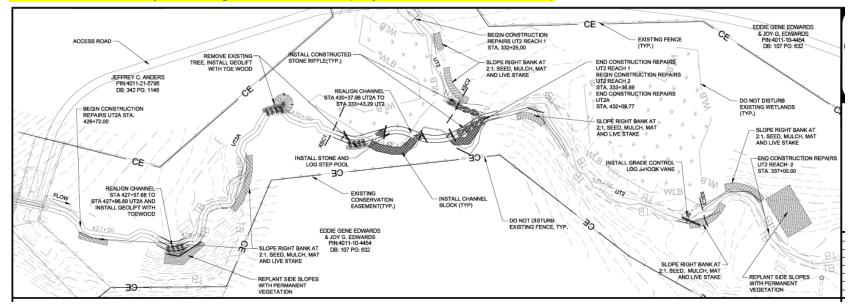
Please let me know if you have any questions or need any further information. We will await your guidance and feedback before making any project decisions.

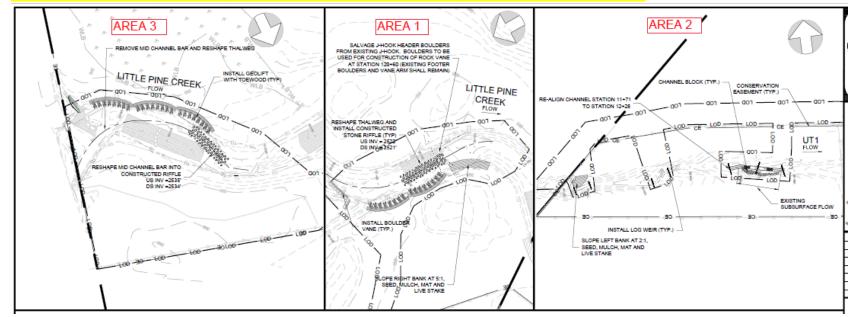
Sincerely, Hang Tromider

Harry Tsomides Project Manager, NCDEQ-DMS


North Carolina Department of Environmental Quality | Division of Mitigation Services 217 W. Jones Street | 1652 Mail Service Center | Raleigh, North Carolina 27699-1652 919.707.8976

Attachments:


Aerial Map Design Plans Photo Log (Pre- and post-repair) 2020 DMS Credit Ledger


North Carolina Department of Environmental Quality | Division of Mitigation Services 217 W. Jones Street | 1652 Mail Service Center | Raleigh, North Carolina 27699-1652 919.707.8976

Phase 1 Stream Repair Design - UT2 / UT2A (September-October 2019)

Phase 2 Stream Repair Design - Little Pine Creek / UT1 (September-October 2020)

Phase 1 Stream Repair Photos – UT2 and UT2A

Phase 2 Stream Repair Photos – Little Pine Creek and UT1

Little Pine Creek III 94903 New 05050001 Alleghany 2012-01299 2014-0041 5/30/2011 2/25/2020 New 05050001

Signature & Date of Official Approving Credit Release

1 - For NCDMS, no credits are released during the first milestone

2 - For NCDMS projects, the second credit release milestone occurs automatically when the as-built report (baseline monitoring report) has been made available to the IRT by posting it to the DMS portal, provided the following have been met:

1) Approved of Final Mitigation Plan

2) Recordation of the preservation mechanism, as well as a title opinion acceptable to the USACE covering the property.

3) Completion of all physical and biological improvements to the mitigation site pursuant to the mitigation plan.

4) Receipt of necessary DA permit authorization or written DA approval for projects where DA permit issuance is not required.

3 - A 10% reserve of credits is to be held back until the bankfull event performance standard has been met.

Credit Release Milestone		Cold Stream Credits									
Project Credits	Scheduled Proposed Releases % Releases %		Proposed Released #	Not Approved # Releases	Approved Credits	Anticipated Release Year	Actual Release Date				
1 - Site Establishment	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
2 - Year 0 / As-Built	30.00%	30.00%	2,092.020	0.000	2,092.020	2016	9/22/2016				
3 - Year 1 Monitoring	10.00%	10.00%	697.340	0.000	697.340	2017	4/3/2017				
4 - Year 2 Monitoring	10.00%	10.00%	697.340	76.800	620.540	2018	7/12/2018				
5 - Year 3 Monitoring	10.00%	10.00%	774.140	0.000	774.140	2019	4/26/2019				
6 - Year 4 Monitoring	10.00%	10.00%	697.340			2020					
7 - Year 5 Monitoring	15.00%					2021					
Stream Bankfull Standard	15.00%	15.00%	1,046.010	0.000	1,046.010	2018	7/12/2018				
	•	•	Totals		5,230.050						

Total Gross Credits	6,973.400
Total Unrealized Credits to Date	0.000
Total Released Credits to Date	5,230.050
Total Percentage Released	75.00%
Remaining Unreleased Credits	1,743.350

Credit Release Milestone	Riparian Credits								
Project Credits	Scheduled Releases %	Proposed Releases %	Proposed Released #	Not Approved # Releases	Approved Credits	Anticipated Release Year	Actual Release Date		
1 - Site Establishment	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
2 - Year 0 / As-Built	30.00%	30.00%	0.418	0.000	0.418	2016	9/22/2016		
3 - Year 1 Monitoring	10.00%	10.00%	0.139	0.000	0.139	2017	4/3/2017		
4 - Year 2 Monitoring	10.00%	10.00%	0.139	0.000	0.139	2018	7/12/2018		
5 - Year 3 Monitoring	15.00%	15.00%	0.209	0.000	0.209	2019	4/26/2019		
6 - Year 4 Monitoring	5.00%	5.00%	0.070			2020			
7 - Year 5 Monitoring	15.00%					2021			
8 - Year 6 Monitoring	5.00%					2022			
9 - Year 7 Monitoring	10.00%					2023			
Stream Bankfull Standard	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
			Totals		0.905				

Total Gross Credits	1.393
Total Unrealized Credits to Date	0.000
Total Released Credits to Date	0.905
Total Percentage Released	64.97%
Remaining Unreleased Credits	0.488

Mitigation Project Name DMS ID River Basin Cataloging Unit County Little Pine Creek III 94903 New 05050001 Alleghany USACE Action ID DWR Permit Date Project Instituted Date Prepared Stream/Wet. Service Area 2012-01299 2014-0041 5/30/2011 2/25/2020 New 05050001

Notes

Contingencies (if any)

Project Quantities

Mitigation Type	Restoration Type	Physical Quantity
Cold Stream	Enhancement I	4,474.000
Cold Stream	Enhancement II	2,193.000
Cold Stream	Preservation	3,224.000
Cold Stream	Restoration	3,221.000
Riparian	Enhancement	2.710
Riparian	Preservation	0.190

Debits							Stream Restoration Credits	Stream Restoration Equivalent Credits	Riparian Restoration Equivalent Credits
Beginning Balance (mitigatio	6,328.600	644.800	1.393						
Released Credits							4,746.450	483.600	0.905
Unrealized Credits							0.000	0.000	0.000
Owning Program	Req. Id	TIP #	Project Name	USACE Permit #	DWR Permit #	DCM Permit #			
NCDOT Stream & Wetland ILF Program	REQ-005451	R-0529BA, R- 0529BB, R- 0529DB	US 421 Widening	1997-07161	1997-0616		170.965		
NCDOT Stream & Wetland ILF Program	REQ-005451	R-0529BA, R- 0529BB, R- 0529DB	US 421 Widening	1997-07161	1997-0616		159.000		
NCDOT Stream & Wetland ILF Program	REQ-006078		SR 1187 Improvements - Division 11	2014-00886			25.000		
NCDOT Stream & Wetland ILF Program	REQ-006088		Bridge 129 on SR 1595 over Nathans Creek	2014-00636			31.000		
NCDOT Stream & Wetland ILF Program	REQ-006108		SR 1393 Improvements - Division 11	2014-01188			260.000		
NCDOT Stream & Wetland ILF Program	REQ-006194	R-2915A	US 221 Widening	2012-00882	2014-0762		143.300		
NCDOT Stream & Wetland ILF Program	REQ-006194	R-2915A	US 221 Widening	2012-00882	2014-0762		671.100		
NCDOT Stream & Wetland ILF Program	REQ-006194	R-2915A	US 221 Widening	2012-00882	2014-0762		261.180		
NCDOT Stream & Wetland ILF Program	REQ-006194	R-2915A	US 221 Widening	2012-00882	2014-0762		322.100		
NCDOT Stream & Wetland ILF Program	REQ-006194	R-2915A	US 221 Widening	2012-00882	2014-0762		223.700		
NCDOT Stream & Wetland ILF Program	REQ-006194	R-2915A	US 221 Widening	2012-00882	2014-0762		87.060		
NCDOT Stream & Wetland ILF Program	REQ-006198	R-2915D	US 221 Widening	2012-00882	2014-0762		2,044.045		

Mitigation Project Name DMS ID River Basin Cataloging Unit County		Little Pine Cre 94903 New 05050001 Alleghany	DWR Permit Date Project Date Prepare			USACE Action DWR Permit Date Project I Date Prepared Stream/Wet. S	nstituted	2012-01299 2014-0041 5/30/2011 2/25/2020 New 05050001	
NCDOT Stream & Wetland ILF Program	REQ-006222		SR 1339 Improvements - Division 11	2014-02058			250.000		
Debits							Stream Restoration Credits	Stream Restoration Equivalent Credits	Riparian Restoration Equivalent Credits
Beginning Balance (mitigation	on credits)						6,328.600	644.800	1.393
Released Credits							4,746.450	483.600	0.905
Unrealized Credits							0.000	0.000	0.000
Owning Program	Req. Id	TIP #	Project Name	USACE Permit #	DWR Permi #	t DCM Permit #			
NCDOT Stream & Wetland ILF Program	REQ-006273		SR 1331B Improvements - Division 11	2014-02340			98.000		
NCDOT Stream & Wetland ILF Program	REQ-006194	R-2915A	US 221 Widening	2012-00882	2014-0762			193.440	
NCDOT Stream & Wetland ILF Program	REQ-006194	R-2915A	US 221 Widening	2012-00882	2014-0762			64.480	
NCDOT Stream & Wetland ILF Program	REQ-006198	R-2915D	US 221 Widening	2012-00882	2014-0762			225.680	
NCDOT Stream & Wetland ILF Program	REQ-006195	R-2915A	US 221 Widening	2012-00882	2014-0762				0.405
NCDOT Stream & Wetland ILF Program	REQ-006195	R-2915A	US 221 Widening	2012-00882	2014-0762				0.010
NCDOT Stream & Wetland ILF Program	REQ-006195	R-2915A	US 221 Widening	2012-00882	2014-0762				0.137
NCDOT Stream & Wetland ILF Program	REQ-006199	R-2915D	US 221 Widening	2012-00882	2014-0762				0.338
NCDOT Stream & Wetland ILF Program	REQ-006199	R-2915D	US 221 Widening	2012-00882	2014-0762				0.015
Total Credits Debited					-		4,746.450	483.600	0.905
Remaining Available balance	e (Released cr	edits)					0.000	0.000	0.000
Remaining balance (Unrelea	sed credits)						1,582.150	161.200	0.488